
Perception in RWA/IFOR

Randall W. Hill, Jr. University of Southern California Information Sciences Institute

Perceptual Challenges

Agents overwhelmed by visual input spikes in the demand for visual processing Ioad increases with number of entities seen handling of visual input affects survivability **n** Agents need to perceive groups support team activities report the sighting of a group perform situation assessment

Visual Processing

- n Each decision cycle:
 - scan for visual objects
 - sense 360 °, 7 km
 - add new visual objects to input-link
 - get state information for extant objects
 - maintain clusters
 - re-compute geometric relations to cluster
 - split clusters when appropriate
 - cluster new entities
 - re-compute geometric relations to entities

Analysis of Perceptual Costs

Spikes in Computational Demand contributing costs - create visual objects for entities perceived - cluster visual objects n Background Load overhead costs - update visual objects on the input-link - maintain clusters - maintains a table of all entities ever seen

Improving Perceptual Processing

Reduce the number of new visual objects processed in one DC addresses spikes in visual processing n Reduce the number of entities on the input link addresses load of visual processing **n** Selectively reduce visual processing per visual object (UM approach)

Focus of Attention

Voluntary attention

- Agent specifies attention criteria:
 - force: opposing or friendly
 - vehicle type (guise): AH64, T72,
 - vehicle class: RWA, Tank, AAA,
 - slant range: 0-7 km
 - cluster id: integer assigned in SMI
- Default: nothing accepted
- Addresses the load problem on input-link

Focus of Attention

n Enforce a visual processing limit retain sensing strategy (360 °, 7 km) postpone processing until next dec. cycle n Active vision approach limit the sensor's range and angle of focus - should limit number entities processed per DC actively point the sensor to cover scene - raises issues about effective search strategies

Perceiving Groups

Clustering

- bottom-up clustering
 - proximity based algorithm O(n)
- top-down clustering
 - agent specifies the members of a cluster
 - used for team tracking
- compute attributes
 - quantity, quantity-by-type
 - location (center-of-mass, bounding-box)
 - geometric relationships (wrt center-of-mass)

Related Work

- n Treisman et al. (80,82,85,88): selective attention
- n Logan (96): integrated theory of visual attention
- n Hayes-Roth (90): reasoning about capacity & use of filters
- n Bajcsy (88): active perception
- n Ballard (91): animate vision
- n Firby et al. (95,96): architecture for vision and action
- n Chella et al. (97): cognitive architecture for artificial vision
- n Newell (90): UTC

Conclusions

n *Nuggets*

- improved performance should be possible by limiting/delaying visual processing
- perceptual grouping provides a useful abstraction for understanding visual scenes

n Coal

- delayed processing not implemented
- not exploiting voluntary attention
- have not tested UM approach