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Frequency Learning

1 Through experience people implicitly acquire and
correctly use frequency information (e.g., Hasher &
Zacks, 1984; Gluck & Bower, 1988).

Frequency of occurrence (base rates)
Conditional probabilities (P(H | D))

1 Frequency acquisition is exhibited in subject

behavior

Probability matching: Distribution of choices
(approximately) matches the probability of each choice

People can closely estimate the acquired probabilities



Example: Identify Friend or Foe

¥ Determine whether a plane is hostile or friendly
based on

0 Route: on (R+) or off (R-) a commercial air route

0 ID: commercial response (ID+) or no response (ID-) to a radio
warning

1 Probabilities
P(F) =2/3, P(H) = 1/3

P(ID+ |F) = P(R+|F) = P(ID- |H) = P(R- |H) = .8

P(ID- | F) = P(R- |F) = P(ID+ |H) = P(R+ |H) = .2
0 Design

75 trials for each subject (50 friendly, 50 hostile)

Each trial

0 Present evidence
0 Receive subject’s decision (friendly or hostile)
0 Present actual intent



Results
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Can Soar Learn and Use
Erequencies?

0 Soar has no direct support for frequency learning or
for probabilistic selection of choices

1 But: Symbolic Concept Acquisition (SCA) can exhibit
frequency effects

0 Learning
Supervised inductive concept learning
Learns a mapping from a set of features to a class
Mapping is a set of recognition rules

Acquires recognition rules from abstract (few features) to
specific (all features)



Rules Example

hostile
result friendly
no-response
id commercial
off-commercial
route on-commercial
) contact
isa

object1



Prediction in SCA

1 Try to match recognition rules from specific
to general, based on the number of features
tested by the rules.

1 Example: 4 feature rules, 3, 2, 1.

1 Stop whenever one or more rules fire and
randomly select from among the proposed
classes



Applying SCA to the Friend or
Foe Task

[]

[]

[

Using Doug Pearson’s SCA2
Features and values

Name: objectl

isa: contact

Route: on_commercial, off commercial

ID: commercial, no_response
Categories

Friendly

Hostile
For each instance (trial)

First, SCA makes a prediction

Second, SCA is trained using the instance and the actual outcome



\SCA Results
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The model tends

to get pulled to
50%.

Explanation:
With enough
trials SCA learns
a friendly and
hostile rule for
each feature set.



Modifyng SCA to Support
Erequency Learning (SCA-F)

1 Learn a duplicate rule for fully
specialized instances

0 For example:

If R+, ID+ then Propose F1: Friendly
[f R+, ID+ then Propose F2: Friendly
If R+, ID+ then Propose H1: Hostile

Since Soar will randomly select a class,
1 P(F|R+ID+) = 2/3
1 P(H|R+ID+) =1/3




< SCA-F Results
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Conclusion

1 Golden Nuggets
SCA-F (and Soar) can do frequency learning
Performs almost as well as Rescorla-Wagner
Consistent with instance based theories of learning (e.g.,
Logan)
1 Lumps of Coal
Does not handle temporal sequences of features
Does not predict order effects in belief updating

No theory for converting implicit frequencies into
verbalizable ones

1 Coal Dust

Currently time increases with the number of rules



