Soar 7.1

Randolph M. Jones, Chris Waterson, and Karen Coulter

June 28, 1997

university michigan

artificial
intelligence
laboratory

Problems With Soar 7.0

e Not easy to install

e Even trickier if you do not create soar-specific versions of Tcl
and Tk

e Different versions for different operating systems

e The most recent versions of Tcl and Tk are different enough
(internally) that it would take significant effort to upgrade to
them.

The University of Michigan Al Lab Soar 7.1 Page 1



What Soar 7.1 Addresses

The Soar kernel does not change (except for bug fixes).

No changes will be required in your productions.

Move from Tcl 7.4 and Tk 4.0 to Tcl 7.6 and Tk 4.2 (at least).
The procedure for starting Soar will change slightly.

There will be a few changes to the command-line interface,
mostly to do with manipulating multiple agents.

Existing simulation and graphical interfaces will likely require
some modifications for communicating with Soar agent
interpreters.

The University of Michigan Al Lab Soar 7.1 Page 2

The General Idea

The most recent versions of Tcl and Tk support the use of
“dynamically loaded extensions” and “packages”.
e This allows us to delineate clearly which parts of Soar are Tcl
and Tk, which parts are the Soar kernel, and which parts are
the interface between the kernel and Tcl.

e This in turn allows users to incorporate the “Soar package”
into whatever version of Tcl they wish (version 7.6 or later),
or to load other Tcl packages with Soar (i.e., future Tcl
upgrades will be easy).

The compilation of Tcl, Tk, and Soar can take place
independently.

e If you already have Tcl 7.6 (or greater) and Tk 4.2 (or greater)
on your system, you can use them to load the Soar package.

e Otherwise you can build Tcl and Tk separately before you
build Soar.

The University of Michigan Al Lab Soar 7.1 Page 3




Making Installation Easier

There are (at least) two reasons why installing Soar 7.0 is

difficult.

e [t is often difficult to figure out the correct configuration of
compiler flags, etc., for each particular system.

e [t is not obvious what all the pieces are and where they need
to be.

The University of Michigan Al Lab Soar 7.1 Page 4

Making Installation Easier

It turns out that the configuration and installation routines for
Tcl and Tk are relatively automated. In addition, these
installation procedures save their configuration parameters in
specific files.

Because Soar 7.1 will assume independently built versions of T'cl
and Tk, the installation procedure for Soar can use all of this
configuration information, and the build will (likely) go smoothly.

e [t took me less than two hours to install Tcl 7.6, Tk 4.2, and
Soar 7.1 on the Ohio State Hewlett Packard machines,
including some bug fixes in the installation scripts.

In addition, we can use the existing T'cl and Tk shells to create a
friendly user interface for building Soar.

The University of Michigan Al Lab Soar 7.1 Page 5



The Installation Dream

e Start the version of tclsh (or wish, or whatever) that you will
be using with Soar.

e [L.oad in the “build-soar.tcl” file.

e Click a few buttons on a graphical user interface, and change
some configuration entries if necessary.

e Click the “build” button.

e Click the “install” button.

e OR, for some platforms (like Windows and Macintosh),
simply download and run a self-extracting binary distribution.

The University of Michigan Al Lab Soar 7.1 Page 6

Supporting Multiple Operating Systems

The biggest headache in adapting Soar 7.0 to different operating
systems was working with different command and graphical
interfaces.

The most recent versions of Tcl and Tk provide strong support
for cross-platform compatibility for Unix, Windows, and
Macintosh (including platform-independent file manipulation).

Building Soar 7.1 as an “optional Tcl package” takes full
advantage of the cross-platform capabilities. Making Soar
available on these different operating systems becomes trivial,
because Tcl and Tk do all the work of talking to the operating
system command interfaces.

The Tcl/Tk Soar Interface (next talk) will also make full use of
the cross-platform capabilities, providing a uniform graphical
interface across platforms (but with native “look and feel” on
each platform).

The University of Michigan Al Lab Soar 7.1 Page 7



How Things Work
We will build on the model used for Tecl and Tk

When you build Tecl (or use a Tcl binary distribution), you get
three basic pieces:

e An “object library” that contains all of the compiled Tcl code.

e A stand-alone executable (tclsh on Unix) that provides a
minimal command-line interface to the object library.

e A “Tcl library” containing specifications of various Tcl
commands.

The University of Michigan Al Lab Soar 7.1 Page 8

How Things Work
When you build Tk, you get:

e An “object library” that contains all of the compiled Tcl code.

— This object library can be used as part of a “Tk package”,
to be loaded dynamically if your operating system supports
dynamic linking.

e A stand-alone executable (wish on Unix), that is basically the
static equivalent of running “tclsh” and then loading the “Tk
package”.

e A “Tk library” containing specifications of various Tk
commands and widgets.

The University of Michigan AI Lab Soar 7.1 Page 9



How Things Will Work
When you build Soar, you will get:

e An “object library” that contains all of the compiled Soar
kernel code.

e Another “object library” that includes the Soar kernel code
plus the code to interface the kernel with Tcl.

— As with Tk, this object library can be used as part of the
“Soar package”, which can be loaded dynamically into any
Tcl interpreter if your operating system supports dynamic
linking.

e A “Soar library” containing the specifications of some Soar
interface commands, the default rules, the Soar aliases, demo
programs, the Tcl/Tk Soar Interface, etc.

The University of Michigan Al Lab Soar 7.1 Page 10

How Things Will Work

You will also have the option of building standalone executables
for:

e soar: The Tcl and Soar object libraries statically linked
together

e soartk: The Tcl, Tk, and Soar object libraries statically
linked together.

The University of Michigan AI Lab Soar 7.1 Page 11



How Start-Up Will Change

Whether you start with tclsh or soar (or wish or soartk),
things will initially be exactly the same. That is, soar starts you
in a Tcl Shell with no Soar commands available. This is for the
sake of uniformity with the “dynamically linked” versions of
Soar.

This also means there will be no special Soar command-line
options, and no special Soar start-up files, because as far as the
system is concerned, you are not really “using Soar” yet.

To turn your Tcl interpreter into a “Soar interpreter”, you must
issue the command package require Soar.

e In the static version of Soar, this will automatically “load” the
Soar package.

e In the dynamic version, the system must have compiled in the
location of the dynamic object library (or use an environment
variable).

The University of Michigan AT Lab Soar 7.1 Page 12

How Start-Up Will Change

When you load the Soar package, the system will automatically
load in the file .soarrc, but there will be no automatic loading
of agent-specific start-up files.

Once you have loaded the Soar package, the system should act
very much like Soar 7.0. . .except if you are using multiple agents!

Note: You will also be able to load any other Tcl packages you
need or desire.

The University of Michigan Al Lab Soar 7.1 Page 13



Multiple Agents in Soar 7.1

The facility for using multiple agents in Soar 7.0 is “home
brewed”, and works well enough, but contains a few bugs and
problems.

The recent versions of Tcl have introduced built-in support for
multiple interpreters, so it makes sense to move to this paradigm
(doing so increases the independence between Tcl and Soar).

There are still some issues to be worked out, because Tcl allows
arbitrary “trees” of interpreters, organized in a master-slave
relationship (the primary motivation here appears to be software
security).

This is not necessarily the most logical structure for Soar agents,
although it does seem to make sense for Soar interpreters to be
“slaves” of a simulation or graphical-interface interpreter (this is
how the Tcl/Tk Soar Interface arranges things).

The University of Michigan AT Lab Soar 7.1 Page 14

Changes in Commands for Multiple Agents

Because we are adopting Tcl’s scheme for multiple interpreters,
Soar 7.1 will do away with Soar 7.0’s multiple-agent commands
(create-interpreter, select-interpreter,
destroy-interpreter).

Unfortunately, making use of multiple agents will require a
relatively thorough understanding of the Tcl interpreter
commands and interactions (but only for interface and simulation
writers, not for the “vanilla Soar user”).

The University of Michigan Al Lab Soar 7.1 Page 15



Miscellaneous Information

Chris Waterson wrote the prototype version of Soar 7.1. This
version is available at:

http://ai.eecs.umich.edu/people/waterson/research/soar71/

Randolph Jones has cleaned up the prototype a bit, and is
working on creating the Friendly Soar Installation Interface.

Karen Coulter and Randolph Jones will incorporate the latest
bug fixes from Soar 7.0, to come up with the final product.

The current prototype will be used at the AAAI Soar tutorial on
machines running Unix, Windows, and the Macintosh operating
system (see the demo tonight).

Hopefully, Soar 7.1.0 will be “released” by the end of the
Summer.

The University of Michigan Al Lab Soar 7.1

Page 16



