
Architectural Goal Maintenance: Operand2

Architectural Goal Maintenance:
Operand2

Bob Wray, John Laird, Ron Chong, Doug Pearson and Randy Jones
robert.wray@umich.edu

Soar XVII
28 June 1997

Outline

1. Motivation
• Non-contemporaneous constraints

• Race conditions/knowledge contention

Problems exacerbated by interaction with an external environment

2. Solutions: New functions for goal maintenance

3. New decision cycle

4. Expected impacts
• Knowledge development

• Cost of solution algorithms

• Impact on performance

5. Future work/Conclusions

Motivation: Existing Problems

A. Non-contemporaneous constraints in chunked rules (NCC)

A rule containing conditions that specify features that
never occur at the same time

1. Persistent features

2. Persistent selections

3. “Elaboration” persistence

B. Race conditions between rule firings
A production result that depends on the number of production firings
before the production fires (in addition to content)

1. Application and elaboration/elaboration persistence

2. Problem solving after impasse resolution

3. Knowledge contention

Are These Problems Significant?

Non-contemporaneous constraints
1. Missing opportunity to learn something useful

• Wasted processing (invoking the chunker for a useless rule)

2. “Write code with learning in mind”

• Novice Soar users have difficulty getting their systems to chunk correctly

3. (Significantly?) increased frequency in external environment

• Some features are changing independent of the rule knowledge

Race conditions
1. Behavior not consistent with PSCM/theory

• “Implementation shows through”

2. Additional design/build time for agent development

3. Increased frequency in external environment

• Activity throughout the stack with changing input

NCCs from Persistent WMEs

O-support: structure is maintained after instantiating conditions change

I-support: structure is retracted when instantiating conditions change

Persistent features lead to non-contemporaneous constraints when:
• instantiating features of the persistent feature change

• other, non-contemporaneous features are used in the subgoal processing

• results include both the persistent feature instantiation and subsequent
features

A A’

1 2 3

3

As A’

I-Supported Feature

O-Supported Feature

s

chunk-1
(A, A’ → 3)

NCCs from Persistent Decisions

“C-support” allows operator selection to persist after proposal is lost

C-support leads to non-contemporaneous constraints when:
• An operator proposal no longer matches

• The operator creates a result (perhaps indirectly)

• The result also depends on some feature not contemporaneous with the
original proposal

A A’

O1+ O1

ncc chunk-2
(A, A’ → NCC)

NCCs from Elaboration Persistence

Soar implementation: “lazy” retraction
• Can result in cascade of retractions
• Elaboration persistence:

I-supported features persist during the elaboration cycle in which their
instantiation retracts.

Elaboration persistence leads to non-contemporaneous constraints when:
• Result is created that tests an i-supported item that will not be present at quiescence

• Result instantiation also tests a feature non-contemporaneous with the disappearing feature

A A’

B

ncc

B’

chunk-3
(A, A’ → NCC)

Elaboration Persistence Race Conditions

A’ and B really should not appear in WM simultaneously

However, they exist simultaneously in the elaboration cycle in which B’s
instantiation retracts

I-supported instantiation matching against retracting WME:

• No problem (feature retracts with instantiation)

O-supported instantiation matching against retracting WME:

• May create feature based on feature(s) not present at quiescence

A A’

B

(A → B)

D

(B, A’ → D)

At Quiescence:
A’, D (not B)

Problem Solving after Impasse Resolution

Problem solving continues until ‘quiescence’ regardless of
whether or not the goal/impasse in which productions are
firing has already been resolved.

Race Condition:
• Current preferences indicate a unique selection

• Current decision indicates an impasse (non-unique selection)

• Knowledge dependent upon one or the other condition can be
retrieved

Potential for non-contemporaneous constraints

Wasted elaboration cycles
• Still retrieving knowledge when the impasse has been resolved

Knowledge Contention

Knowledge applied simultaneously can “contend” for the
same resource (e.g., output-link)

• create identical values: no problem

• create new identifiers: attribute tie
• even if identifiers have identical structure

Architecture:
• No way of recognizing ‘identical’ pieces of knowledge or

preferring one over another

S1:
O1: do-task
 S2: (operator no-change)
 O2: determine-what-to-do
 S3: (operator no-change)
 O3: do-subtask-4

chunk-1
(O1, I1 == 3 → send-output <x>)

do-subtask-4*apply*send-output
(O3, I1 == 3→ send-output <x>)

Previous Solutions

Number of attempts to solve NCC

• Architectural solutions
• S-support

• OPERAND

•

• Solutions using programming conventions
• Neo-PEACTIDM

• Cambridge

•

Solutions broader than just NCC

No(?) attempts to solve race conditions architecturally

• A few attempts to document them (R. Jones)

A B C D

1 2 4

3

5

A′ D´ E´

E

= Non-Persistent (I-Support)

= Persistent (O-Support)

Addressing NCC: S-Support

• D to D´ transition: Remove 3 then 5
• A to A´ transition: Remove 3, 4 and 5
• E to E´ transition: No effect
• Subgoal persists across all transitions

A B C D

1 2 4

3

5

A′ D´ E´

E

= Non-Persistent (I-Support)

= Persistent (O-Support)

Addressing NCC: OPERAND

• Creation of 3, 4, and 5: Redecision of operator slot in subgoal
• D to D´ /A to A´ transition: Redecision at supergoal (subgoal removed)
• E to E´ transition: Also redecide operator slot at supergoal
• Subgoal (possibly) regenerated after supergoal persistent changes

Comparison of S-Support and OPERAND

S-Support
• Feature-centered truth maintenance
• + Conservative WME removal (minimal increase in decisions)
• - Computationally expensive
• - Potentially more race conditions

OPERAND
• Goal/Slot-centered monitoring of persistent effects
• + Computationally cheap
• + Requires architectural recognition of persistent effects

• Changed o-support calculation
• + Eliminated need for operator terminations
• + Race Conditions:

• Separated operator application (PE) from elaboration (IE)
• Delayed chunking until quiescence

• - Aggressive response to persistent changes
• Large increase in pre-chunk decisions

Operand2: Overview

New goal maintenance functions:

1. Goal-oriented truth maintenance

2. Separation of goal elaboration and operator application

3. Selection consistency checks

4. Goal-limited knowledge retrieval
+ Removes sources of non-contemporaneous constraints

+ Solves some race conditions

+ Adds constraint for knowledge design

- Additional computational cost of new functions

- Performance costs (increased decisions, elaborations)

- Another change to the architecture

1. Goal-Oriented Truth Maintenance
Associated with each goal is a “goal dependency set” (GDS)

• Creation of o-supported WMEs adds instantiating, supergoal features to
the dependency set

• When a WME on a goal’s dependency set is removed, the goal is removed
as well

Result:
• Elimination of NCC due to persistent WMEs

• Altered strength of persistence of o-supported WMEs
O-supported WMEs persist only as long as the WMEs instantiating supergoal
features remain unchanged

Cost:
• Memory: new data structures for GDS

• Algorithm: Backtrace-like mechanism for each o-supported WME addition

A B C D

1 2 4

3

5

t1 t2 t3

A′

t0 Dependency Set:
t0 = ∅
t1 = (A, D)
t2 = (A, B, C, D)
t3 = (A, B, C, D)

D´ E´

E

= Non-Persistent (I-Support)

= Persistent (O-Support)

Goal-Oriented Truth Maintenance

• Dependency Set maintained for o-supported features only

• I-supported features have “built-in” dependency maintenance

• D to D´/A to A´ transitions: retraction of the subgoal

• E to E´: no retraction (not in the dependency set)

2. Separation of Elaboration and Application
Application ‘Superphase:’ (PE)

• Only o-supported assertions may fire

• Always one elaboration cycle per PE

Elaboration ‘Superphase:’ (IE)

• I-supported productions match, fire and retract

• O-supported instantiations can retract

• Multiple IE elaboration cycles per IE

• IE continues until “minor quiescence:” all i-instantiations fired

Result:

• Elimination of NCC due to persistent elaboration

• Elimination of the application/elaboration race condition

Cost:

• Loss of some parallelism

• (potentially more elaboration cycles/decision)

IE & PE Superphases

PrefWM

Output

¬q

Pref WMMinor
 q?

q

PE (1 ec/phase)IE (multiple ec/phase)

3. Selection Consistency
A. Eliminate C-support

• Operator persists only as long as its proposal condition is true
• Operator is retracted as soon as preference is lost (not at decision)

B. Consistency checks during decision
• Check current preferences against current decision
• Remove decision if not consistent with preferences (+ any substructure)
• Check at minor quiescence (before any persistent structures are created)

Result:
• Eliminate NCC from inconsistent selections
• No problem solving below an impasse after impasse resolution
• No operator terminations

Cost:
• Additional operator proposals (& possible additional complexity)
• Performance:run-preference-semantics

• Learnability/Usability: “Why did my operator go away?!”

Example: Decision Consistency

When “fire” is detected, operator respond-to-emergency is proposed

Operand2: (Minor quiescence)
• Preferences have changed

• Check preferences against current decision

• Result is not consistent
• respond-to-emergency is best choice

• Install respond-to-emergency

Soar 7:
• O1 must be terminated before new operator can be selected

S1:
O1: do-routine-tasks
 S2: (operator no-change)
 O2:

propose*respond-to-emergency
(fire → operator <o> + >)

Interruptions

Soar 7:
• Decisions were removed only in the decision phase

• Operator selections were removed only when reconsidered

• Always reach quiescence in each goal in the stack

Operand2:
• Remove:

• Goal when a WME in its GDS changes (immediate)

• Operator selection whenever proposal is lost (immediate)

• Decisions when inconsistent with changed preferences (minor q.)

• Decisions will not necessarily persist until (Soar 7) quiescence

Repercussions: A New Race Condition

Subgoal processing can be interrupted at any time

Assume O1 is retracted after its second serial application:

• O2 is interrupted before firing a third application

• O3 was able to terminate because it had only one application

Race Condition:

• Amount of problem solving in the subgoal in a given decision becomes a
function ofnumber of serial operator applications (as opposed to the
content of the applications).

S1:
O1: operator-1
 S2: (operator no-change)
 O2: operator-2
 S3: (operator no-change)
 O3: operator-3

4. Goal-Limited Knowledge Retrieval
Only productions that match in the ‘active’ goal fire/retract

• Activity proceeds from top state to the bottom state (“Waterfall”)

• Results can trigger activity higher in the stack

Result:

• Ensures that all supergoal states are quiescent and their decisions are
consistent before any subgoal processing proceeds.

Make all progress possible in one state before proceeding to another

• Eliminates knowledge contention race condition

Cost:

• Less parallelism
• Potentially many more elaboration cycles/decision

• Algorithm: Sort assertions and retractions

Knowledge Contention Solution

Goal-limited knowledge retrieval

• Imposes conflict resolution for knowledge contention

• Productions matching goals higher in the stack are preferred to those
matching goals lower in the stack

Architecture:
• Given a mixture of learned and deliberate behaviors, prefer the learned behaviors

Solution:

• Requires that knowledge test resource

• (or chunk leads to new decision)

S1:
O1: do-task
 S2: (operator no-change)
 O2: determine-what-to-do
 S3: (operator no-change)
 O3: do-subtask-4

chunk-1
(O1, I1 == 3 → send-output <x>)

do-subtask-4*apply*send-output
(O3, I1 == 3→ send-output <x>)

do-subtask-4*apply*send-output
(O3, I1 == 3, !send-output
→ send-output <x>)

Soar 7 Decision Cycle

Input

Pref WM

Output Decision
Q¬Q

Changes to the Decision Cycle
New phase: Determine Level

• Checks for Quiescence

• Determines active production type (IE or PE)

• Determines active level

• If minor-quiescence, makes consistency check

Input Phase: once per decision
• Continuously changing input could make it impossible to ever reach

bottom level

• Consistent with experience in other systems (e.g., TacAir-Soar)

• Can a system ever reach quiescence while also accepting input?

Production-type (IE/PE) for WM and Preference Phase
• Set in Determine Level Phase

Operand2/Soar Decision Cycle

Input

Pref

WM

Output

Decision

¬Q

Inconsistent Decision

Determine
Level

Quiescence

Return to
Level

LEVEL:=

Is
LEVEL

the same as
PREVIOUS_LEVEL?

minor quiescence

Is
LEVEL

lower in stack than
PREVIOUS_LEVEL?

Is
LEVEL

higher in stack than
PREVIOUS_LEVEL?

yes

no

Minor quiescence
at PREVIOUS_LEVEL?

Decision
Consistent at

PREVIOUS_LEVEL?

NEXT_PHASE:= DECISION
yes

yes

no
yes

yes

yes

no

no

no

Quiescence?
yes

NEXT_PHASE:= DECISION

PREVIOUS_LEVEL:=

highest_active_level

Is
this a new

decision?

NEXT_PHASE:= PREF

yes

no

Returning
from an

interruption
at a higher level?

yes NEXT_PHASE:= DET_LEV

LEVEL

at LEVEL?

Decision
Consistent at

LEVEL?

yes

NEXT_PHASE:= PREF

no

no

no

DETERMINE_LEVEL_PHASE

Input

Determine Level

Pref

WM

Output

Decision D D

Decision X Decision X +1

PE Y PE Y+1

EC Z EC Z+1 EC Z+2 EC Z+3 EC Z+4 EC Z+5

time

The Operand2 Decision Cycle

P
ha

se

D

Production Firings for O-Supported Preferences

Input Entering Working Memory

Decision Procedure

Additions to Working Memory (i-supported)

Production Firings for I-Supported Preferences

Working Memory Passed to Output

Quiescence (No Productions Ready to Fire)

Additions to Working Memory (o-supported)

Legend:

Consistency Check (dark: inconsistent decision)

?= ?= ?= ?= ?= ?= ?=

?= Determine Active Level

?=

Impact: Soar Theory, Systems, & Users

How will Operand2 impact:
• Knowledge design?

• Existing systems

• New systems

• Soar metrics?

• Overall performance?

• Timing Studies/Cognitive modeling?

• Ron Chong (others?)

• Learnability and usability?

• Conclusions

Impact: Knowledge Design

General Expectation:

More constraint (→ less debugging)

Specific Expectations:

- Greater care in what one makes persistent (o-support)

- Greater care in proposal conditions

- Greater care in impasse conditions

+ Less need to design explicitly for learning

+ No race conditions

Impact on Existing Systems:µTAS

Micro TacAir-Soar
• Subset of the IFOR/TacAir productions

• Goal hierarchy of execution knowledge (little internal reasoning)

• Simulates 2-v-1 tactical air combat

• Knowledge for both lead and wing

• 588 total productions (32 operators)

• Not possible to run with learning on
Results in rules with NCC/knowledge contention failures

Preliminary results of conversion to Operand2:
• No learning data: Chunking works but chunks are over-specific

• Not tested with Goal-Limited Knowledge Retrieval (Waterfall)

• Behavior not validated by “expert”

• Non-deterministic domain

• very hard to make performance and behavior comparisons

µTAS Conversion Data
Soar 7: 588 productions

Operand2: 550 productions
Deletions:

DT: delete termination production - 33

DSP: delete the ‘suggest-proposal’ - 11

DP: deleted production - 5

Additions:

API: additional proposal for intermediate state + 1

ATM: additions for timing (must be done in top state) + 5

NO: New operator added to goal hierarchy + 3

NP: New Productions + 2

Modifications:

CT: change termination (action in addition to reconsider) 1

CP: change proposal (modify preconditions) 5

MPE: modification of OA due to change of precondition element 3

MIE: modification of application due to internal element (GDS) 0

M: Miscellaneous modifications 11

Total number of changes: 80

“Easy” changes: 44

Bad news: 36 modifications were hard work

• domain/knowledge analysis

Good news:

• Over 86% of the knowledge required entirely no modification

• Decrease in total production knowledge for task (-6.5%)

µTAS Conversion: DSP

DSP: Delete Suggest Proposals
• Actual operator preconditions used to create “suggest-proposal” structure

• Operator proposal: tests for suggest-proposal structure

• Operator termination: tests for absence of suggest-proposal

General way of having operators terminate when proposal is lost

Unnecessary in Operand2
• Operators are architecturally retracted whenever the proposal is retracted

µTAS Conversion: New Operators
Soar:

• Multi-step operators (without implementation subgoals)

• Proposal conditions based on first step of process

• Termination condition based on completion of last step of process

Operand2:

• Difficult to write multi-step operators

• Proposal condition must match throughout the entire operator

• Solution: break a multi-step operator into multiple, single-step operators

• Example of additional constraint:

• Really want simple operators

• debugging, composability, (psychological plausibility), etc.

New Operator: push-fire-button
Soar 7:

• push-fire-button proposal: no missile waiting to clear aircraft

• Action1:
Output command to push the plane’s fire button

Leads to creation of a missile waiting to clear aircraft

• Action2:
Count for a number of seconds until missile has cleared

• Terminate when missile has cleared (in flight)

Operand2:

• Problem: Action1 leads to immediate retraction of push-fire-button

• Solution: 2 Operators
Action1: push-fire-button

Action2: wait-for-missile-to-clear

Timers will generally require separate operators (GDS-generated retractions)

µTAS Conversion: Clean Up
Soar 7:

• Operators never interrupted in mid-decision

• Write items on state, clean-up before termination

• suggest-proposal structure allowed recognition of necessity of clean-up

Operand2:

Not possible to guarantee deliberate clean-up

Solutions:

A. Store local data under i-supported structure

• Build i-supported structure with similar conditions as operator proposal

• Will get removed with operator (similar to suggest-proposal)

B. Store anything that needs to be cleaned up on the operator itself

• Retraction of operator results in automatic (architectural) clean-up

Performance Comparisons

µTAS
• Difficult to make exact comparisons due to non-determinism

• Rough comparison (5min run)

Dynamic Blocks World Test Bed
• Compare performance for simple, deterministic tower-building task

Soar 7

Operand2 1.0 (no Goal-limited knowledge retrieval)

Operand2/Waterfall (Goal-limited knowledge retrieval)

Soar 7

Decisions: 3172

Elaboration Cycles: 4906

Production Firings: 7074

Kernel Time: 18.6 sec

Total CPU Time: 45.5 sec

Operand2 1.0

Decisions: 3180

Elaboration Cycles: 12572

Production Firings: 18711

Kernel Time: 23.9 sec

Total CPU Time: 42.7 sec

Michigan
OPERAND

OPERAND2

0

1Dynamism 0

1

Dependent Changes

Decisions

Expected Decision Differences

0

50

100

150

200

250

300

1 2 3

S
t
e
p
s

Run Number: (1= No Learning) (2 = Learning On) (3 = After Learning)

Michigan
OPERAND

Neo-PEACTIDM
Cambridge

Operand2 (1.0)
Operand2 (Wat)

Decision Cycle Comparison

0

50

100

150

200

250

300

1 2 3

S
t
e
p
s

Run Number: (1= No Learning) (2 = Learning On) (3 = After Learning)

Michigan
Operand2 (1.0)
Operand2 (Wat)

Decision Comparison

100

200

300

400

500

600

700

1 2 3

E
l
a
b
o
r
a
t
i
o
n

C
y
c
l
e
s

Run Number

Michigan
Operand2 (1.0)
Operand2 (Wat)

PE: Operand2 (1.0)
PE: Operand2 (Wat)

Elaboration Cycles

2

3

4

5

6

7

8

9

10

1 2 3

E
l
a
b
o
r
a
t
i
o
n

C
y
c
l
e
s
/
D
e
c
i
s
i
o
n

Run Number

Michigan
Operand2 (1.0)
Operand2 (Wat)

Elaboration Cycles per Decision

100

200

300

400

500

600

700

800

1 2 3

P
r
o
d
u
c
t
i
o
n

F
i
r
i
n
g
s

Run Number

Michigan
Operand2 (1.0)
Operand2 (Wat)

Production Firings

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1 2 3

P
r
o
d
u
c
t
i
o
n

F
i
r
i
n
g
s
/
E
l
a
b
o
r
a
t
i
o
n

C
y
c
l
e

Run Number

Michigan
Operand2 (1.0)
Operand2 (Wat)

Production Firings/Elaboration Cycle

0

2

4

6

8

10

1 2 3

P
r
o
d
u
c
t
i
o
n

F
i
r
i
n
g
s
/
D
e
c
i
s
i
o
n

Run Number

Michigan
Operand2 (1.0)
Operand2 (Wat)

Production Firings/Decision

0

0.2

0.4

0.6

0.8

1

1 2 3

C
PU

 S
ec

on
ds

Run Number: (1= No Learning) (2 = Learning On) (3 = After Learning)

Michigan
Operand2 (1.0)

Operand2 (Wat)

Kernel Time

0

5

10

15

20

25

30

35

40

45

50

1 2 3

C
PU

 S
ec

on
ds

Run Number: (1= No Learning) (2 = Learning On) (3 = After Learning)

Michigan (1/ec)
Michigan (1/dec)

Operand2 (1.0) (1/pe)
Operand2 (Wat) (1/dec)

Total Execution Time

0

2

4

6

8

10

1 2 3

m
ill

is
ec

on
ds

 p
er

 D
ec

is
io

n

Run Number

Control
Operand2 (1.0)

Operand2 (Wat)

Time (ms) per Decision

1

1.1

1.2

1.3

1.4

1.5

1.6

1 2 3

m
ill

is
ec

on
ds

 p
er

 p
f

Run Number

Control
Operand2 (1.0)

Operand2 (Wat)

Time (ms) per Production Firing

Synopsis of Performance Results
Decisions:

• Increase: GDS removals

Elaborations:
• Increase: Split of application and elaboration

• Increase: Goal-limited knowledge retrieval

• [Decrease: single input/decision]

Total production firings:
• Increase: Elaboration of new decisions

• Decrease: No knowledge retrieval after impasse resolution
Block stacking task: net decrease

Execution time:
• Increase: Additional functions

• Decrease: More efficient support calculations
Block stacking task: net decrease also due to decrease in production firings

Future Work

Implementation:
• More efficient algorithm for goal-limited knowledge retrieval

• Negations for goal dependency set

• Annotations of trace for improved understandability

• *Operator elaboration support
• Should not be able to search through different operator elaborations?

Testing and validation:
• More tasks in blocks world

• Finish microTacAir-Soar conversion

• Conversion of an application/model with internal reasoning

Documentation:
• Tech Report (in progress) detailing changes:

http://ai.eecs.umich.edu/soar/soar8/index.html

Conclusions

Operand2:
+ solves to problems it was designed to solve:

• No observed non-contemporaneous constraints

• No elaboration persistence race conditions

• No knowledge contention

• Decision terminates when impasse is resolved

- can increase the number of decisions & elaborations (wrt Soar 7)
• Extra decisions: GDS removals

• Extra elaborations: reduced parallelism

- exhibits moderate increases in CPU time/decision
• Additional functionality

Conclusions (cont.)

Operand2:
? should have little impact on Soar as UTC

• Mostly implementation-level changes

• Existing models consistent with 1 PE = 50 ms hypothesis?

? Previous systems

- potentially difficult conversion process

+ additional constraint points to problems in code

? Learnability/Usability

- more complex system

+ additional constraint: less debugging, faster total development time

