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Introduction

The Soar system (Laird, Rosenbloom, and Newel 1986)
learns by creating chunks for solved subgoals.  It then
retains all learned chunks unless excised manually
(Laird et al. 1993).  However, production users of Soar
generally turn learning off, as in (Rosenbloom et al.
1994).  Preliminary investigations into Soar’s use of
chunks found as many as half of the chunks were never
used.  Because the random removal of learned rules was
demonstrated to improve the performance of another
problem solver (Markovitch and Scott1988), the removal
of chunks automatically in Soar is likely to be valuable.

    As a prelude to modifying, tests have been
conducted using the manual excise function of Soar to
test the value of the new functionality.

Purpose

The purpose of this experiment was to manually test the
effects of excising unused chunks in Soar during long-
term learning.

Method

The approach was to compare performance of an
existing Soar system during long-term learning with and
without the excising of low-use chunks. The Soar
system used was the classifier, Symbolic Concept
Acquisition (SCA)  (Miller 1993). 
    SCA is a relatively simple model of human concept
acquisition.  It is a supervised, symbolic learner that has
reproduced some of the characteristics of human
concept acquisition found in psychological literature.
    From each training example of a concept, SCA learns
one new classification rule consisting of a random
subset of the training example’s feature-values pairs. 
The first chunk learned contains the smallest, subset of
the training examples’ feature-values, therefore most
general rule.  With experience, the system’s new rules
contain more and more feature-values, becoming more

and more specific.  When making a prediction, the
system prefers the more specific rules and does not
learn a new rule.
    The classification problem source was king+rook
versus king+pawn where the pawn is one square away
from “queening.”  The data was obtained from the
University of California, Irvine’s collection of machine
learning problem data (Murphy 1994).  This chess data
contains 3,196 instances of two class problems (White-
can-win and White-cannot-win) each with 36 attributes.
 The class distribution is 52 percent White-can-win and
48 percent White-cannot-win.
    This chess data was chosen because the relatively
large number of attributes and available instances from
which to create training examples and testing problems
supports relatively long-term problem solving.  Long-
term problem solving is necessary to test the value of
excising chunks. However, the chess endgame
classification problem was expected to be beyond the
capability of SCA to successfully learn. 
    The experimental method was to conduct training
with 10 sequential sets of 50 examples with testing
using 100 problems between each training set for a
cumulative total of 500 training examples and 1000
testing problems.  Problems for both training and
testing were taken at random with replacement from the
database of 3,196 instances.  The difference between a
training example and a testing problem is whether or not
the classification category is provided as input.  The
base case retained all chunks learned and the test case
involved excising low-value chunks after the learning
set and before the testing.  Chunks were considered of
low value if they had not been used at all by the end of
the training set after the one in which it was learned, i.e.,
after a minimum of 50 problems and maximum of 100
problems since the chunk was learned. Chunk use
during testing was not considered in evaluation of the
chunks.  Analysis of the trace of Soar’s learning
identified the number of times each chunk was used. 
Chunks that were not used at all during the subsequent
learning set were excised manually before the next
testing set.  The pattern was a learning set followed by
excising unused chunks followed by a testing set



followed by the next learning set.

Results

The results will be discussed in the areas of learning
and chunk use, performance in terms of accuracy, and
performance in terms of use of resources. 

Learning and Chunk Use
As explained above, SCA always learns one chunk for
each training example.  Learning consists of adding one
more characteristic to the current rule’s set, provided it
does not invalidate the deduction.  If the same training
example is repeated, more and more specific chunks are
learned.  In both the base case and the test case, the
number of chunks learned was equal to the number of
training examples.
    Analysis of chunk use in subsequent training
examples showed an increasing number of unused
chunks.  Figure 1 shows the number of chunks meeting
the excising criteria.  Figure 2 shows that with manual
excising of the low-value chunks, learning was trending
toward producing no valuable chunks.

    Figure 1.  Chunks meeting excise criteria

Performance in Terms of Accuracy

After each training set, a different, randomly selected
testing set of 100 classification problems was run. 
Accuracy of the classifications is presented in Figure 3.

 

Performance in Terms of Resources
The use of resources is presented in two ways: during
learning and during testing.  The following resource
variables were indistinguishable between learning and
testing runs: 

total number of production firings,
number of chunks fired,
number of decision cycles,
number of working memory changes,

   and   maximum working memory size.

However, the CPU time to either learn or solve the
classification problems grew over problem solving
experience.  During the 500 learning examples, the plots
of CPU time with and without chunks were
indistinguishable.  The Figure 4 shows the variations in
raw CPU times.
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CPU time during the 100 test problems was separable
using a moving average with a width of 10.

Analysis

The experiment was able to demonstrate an observable
impact of the excising of low-value chunks.  The 500
training examples led to the learning of 500 chunks
without excising and less than 200 with excising. 
Although the only resource impact was in CPU time, the
difference in the time was becoming very significant,
nearly 1 second per problem or approximately 25 percent
savings.  
    The memory involved with the retention of chunks
was not monitored but would be expected to show the
savings associated with maintaining only 200 of the 500
learned chunks.

Conclusion

This experiment has shown potential to justify adding
the ability to excise chunks under program control to
the Soar system.
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