
Learning By Instruction
Using a Constrained
Natural Language

Interface
Mazin Assanie and John Laird

Artificial Intelligence Laboratory
The University of Michigan

1101 Beal Ave.
Ann Arbor, Michigan 48109-2122

{mazina,laird}@umich.edu

What is this project about?

◆ This research project
presents an approach to
agent learning using
interactive natural-
language tutorial
instruction.

“Always two there are: a master
and an apprentice.” - Yoda

ApprenticeSoar System
Overview

TankSoar

Output Link

Natural Language
Module

ApprenticeSoar Agent

Input Link

Instructions

Responses Input Link

Instructo-Soar

◆ Scott Huffman and John Laird [1990]
◆ Contributions towards our work

➢ Abstract problem statement and analysis
➣ Delineating problem components
➣ Classifying missing knowledge types
➣ General approach to learning procedural knowledge

Comparing ApprenticeSoar with
Instructo-Soar
◆ Why aren’t we using Instructo-Soar’s code

➢ Conceptually separate learning by instruction
➢ All facets deeply intertwined with NL-Soar

➣ Result: Recall and learning very different

◆ Different NLP approach
◆ Improving breadth of interaction*
◆ Learning state features
◆ Learning about dynamic environments
◆ Achieve same high-level functionality

➢ * Currently tackling
➢ ** Future milestone

NLP System Overview

Instruction Interface
(via keyboard)

Speech Recognition
(using same grammar as below)

Chart
Parser

Semantic
Mapper

ApprenticeSoar NLP ModuleApprenticeSoar Agent

Constrained NLP
◆ Use constraints of dialogue task to determine

range of acceptable utterences.
➢ Focus on utility
➢ Avoid ambiguity

◆ User’s burden
◆ System’s burden
◆ Is this realistic?

➢ Infocom parser

Approach Taken w/ NLP Module
◆ Goals:

➢ Conceptually separate from learning by instruction
➢ Fast
➢ Easily expandable, modifiable
➢ Can be used in your system or other domains

◆ Why we didn’t use NL-Soar
◆ Augmented context-free semantic grammar

➢ Can use features to increase accuracy
➢ Semantic annotation

◆ Lexicon
➢ Contains features and semantic annotations

Translating Parse Trees
to Soar WMEs
Here’s a fairly simple utterance: “If a missile is approaching,

push big red button.”

How would you translate this into Soar
working memory elements?

S

CC

VPCP NP

VP AdjArt N

SV

VP
S

VP NP

CV NPAdj

NPAdj

N

a missile

is

approaching
If

push big

red

button

S

CC

VPCP NP

VP AdjArt N

SV

VP

S

VP NP

CV NPAdj

NPAdj

N

(<utt> ^type conditional-utterance ^command
<wm1> ^context <wm4>)

(<wm1> ^action push ^object <wm3>)

(<wm3> ^isa button ^attributes <wm2>)

(<wm2> ^color red ^att big)

(<wm4> ^object missile ^necessary-features
approaching)

Utt

4 1

2

3

^type conditional-utterance

^action push

^command

^isa button

^color red
^att big

^object

^attributes

^context

^object missile
^necessary-features approaching

Translating Parse Trees
to Soar WMEs (cont.)

◆ Our solution:
➢ Semantic annotations on each rewrite rule:

➣ Creation of Soar objects
➣ Creation of attributes:

➣ Literal values
➣ Inherited values passed up from children
➣ Values from workspace (future work)

➢ Bottom-up semantic translation
➣ Inheritance rules
➣ Creation and linking together of Soar WME’s as

necessary

Translating Parse Trees
to Soar WMEs (cont.)

◆ NP = noun [object-class <s1>].

◆ NP = article NP [specific <s1> * <s2>].

◆ NP = adj NP [attribute <s1> * <s2>].

◆ CommandPhrase = CommandVerb [action <s1>].

◆ CommandPhrase = CommandVerb adv [action <s1> attribute <s2>].

◆ CommandPhrase = CommandVerb NP [action <s1> object <<s2>>].

◆ ConditionalClause = ConditionPrep FeatureStatement [* <s2>].

◆ Sentence = CommandPhrase [type imperative-utterance command <<s1>>].

◆ Sentence = ConditionalClause Sentence [conditional-context <<s1>> * <s2>].

◆ * Sentence.

A Sample Grammar
(sans features)

context-free rewrite rule semantic annotation

Soar Component: What do we want
the ApprenticeSoar Agent to learn?
◆ State Features
◆ Plans

➢ Learn new procedural hierarchies
➢ Generalizing and extending
➢ Effects of operators

◆ Operator Preference Knowledge
➢ Preference
➢ Aversion

General Approach to How We
Learn From Instruction
◆ 1. Tutorial dialogue
◆ 2. Initially stored in short-term memory

(WME’s).
◆ 3. Transferred to long-term memory

(chunks)
➢ Practice
➢ Internal projection

Simple Example of Learning of a
State Feature
Tutor: If a missile is approaching, turn-on shields.
Apprentice: I don’t know what it means for a missile to have the

feature approaching. How can I detect it from my percepts?
Tutor: Some incoming sensor is active.
Apprentice : Ok, what other constraints are there?
Tutor: Description-completed.

Apprentice : OK, I have learned a rule to detect when a missile is
approaching.

Apprentice : I have learned a general rule that whenever a missile
is approaching, I should turn on my shields.

- missile approaches
Apprentice : I have learned a rule for this situation, I am turning

on my shields.

Learning State Features

◆ Learning new mappings
➢ Naming state features
➢ Renaming plans

◆ State feature detection dialogue
◆ Juxtaposition of sensory constraints
◆ Expressibility
◆ Declarative to long-term memory

Expressibility of Constraint
Specification
◆ Can apply to either percepts or detected

features
◆ Constraint on a feature

➣ Equality
➣ Numerical
➣ Existence or absence of a feature

◆ Constraint on feature tree or multiple
features

➣ Conjunctions
➣ All, every, some/any, no
➣ Limited disjunction of constraints

Example of Extending A Plan*

- Agent is doing some battle technique. It has lined up another
tank and his site and is about to fire.
Apprentice: I cannot proceed with performing battle with blue tank
because a there does not exist any missile and that is a
precondition of firing.
Tutor: If you do not have any missile, go to weapons recharger.
Apprentice: I know how to do that. Thanks for the advice.
- Agent stores this information declaratively.
- Agent executes the plan to go to the weapons recharger.
- Noticing that it has satisfied the precondition, it learns a new
rule to satisfy this precondition in that situation.
Apprentice : I see that going to the weapons recharger has
caused a missile to now exist. Returning to performing battle with
blue tank. I’ll remember your advice if that should happen again.

Achieving Preconditions*

◆ Impasse in plan execution due to unsatisfied
precondition

◆ Instructor provides missing knowledge
◆ Agent learns a situated, opportunistic

operator that can fire during future impasses
to achieve preconditions.

Example of Learning of a New
Plan*
Tutor: Go to an energy recharger.
Apprentice: I know how
Tutor: If an energy recharger is ahead, move forward.
Apprentice : Ok, I detect an energy recharger ahead, so I will

move forward.
-> Agent moves forward
Apprentice : Continue moving forward until energy recharger not

ahead.
-> Agent moves forward twice more. It is on recharger, so no

longer ahead.
Apprentice : Ok, I do not detect an recharger ahead. What now?
Tutor: Task-completed.
Apprentice : Thank you. I’ll remember how to do that in the future.

Plan Representation

◆ Plans can contain
➢ Nested plans
➢ Conditional execution, i.e. branching, loops*
➢ Multiple branches**

◆ Operator templates
➢ Goal-oriented

➣ Very important because of EBL nature of learning
➢ Reduces complexity of planning
➢ Must have templates for all primitive operators

Generalizing a New Plan*

◆ First learn rote lock-step plan
◆ EBL approach to explain why each step leads

to the appropriate goal condition.
➢ Must determine goal conditions

➣ Hard credit assignment problem.
➣ Domain knowledge, instructor assistance/verification

➢ 2 Ways to do
➣ Internal projection
➣ Practice

Learning Operator Preference
Knowledge**
◆ Preferring one operator or plan over another
◆ Always avoiding certain actions
◆ Can be useful for plans with multiple non-

preferred branches
➢ Can learn to choose certain branches depending

on the context in which the agent is in
➢ Agent would know when to ask for more

knowledge

Nuggets

◆ Sum is greater than its parts
◆ Must be very careful with chunking

➢ Do not want long-term knowledge is dependent
upon having the instruction in short-term
memory.

◆ Using a context-free grammar buys you
good speech recognition for almost free.

Coal

◆ Avoid general natural language comprehension.
◆ No compelling reason to build an agent from

scratch using only natural language input.
◆ Sensitivity to:

➢ structure of semantic translation
➢ declarative representations

◆ Implementing the functionality of a large project in
a different way requires very careful planning of
representations.

Future Work
◆ Finish items marked with asterisks
◆ Expand interaction and transfer components

➢ Increasing types of interactions/instructions
➢ Describing more difficult state features

➣ Features over a set of percepts
➣ Features resulting from internal reasoning

➢ Apprentice-initiated interaction
➣ Missing knowledge
➣ Verification
➣ Explanation

◆ Using means-end analysis to improve learning

