
Situated learning

approach to

design using

SOAR

Gourabmoy Nath

Key Centre of Design Computing & Cognition

University of Sydney

0-0

Summary

� Situated learning is an emerging idea in
design and is in
uenced by its parallels
in educational instruction and situated
cognition.

� Present key aspects of situated learning
in design.

� Model situated learning in design using
chunking in the context of an
architectural design problem.

� Interpret the results of chunking in
design in terms of the key aspects of
situated learning.

1

Situated Learning in design
� Context plays a key role in shaping the
�nal design artifact and the processes
that are used to create the artifact.

� Motivation: What design move to make
in response to a given context is not
well-formalized and tacit. Designing is
abductive in nature.

� Learning within the authentic context
of designing by experimenting within
design contexts

� Correlating design knowledge to the
patterns of the design context under
which that knowledge was used.

� Correlation = When to apply design
knowledge ? How to apply design
knowledge ?

� Using the learnt knowledge to solve
same/similar problems.

2

Situated learning �!
chunking: abstract mapping

� Learning while doing �! chunking
occurs while problem-solving.

� Experimentation �! Search in subgoals

� Patterns of context �! working
memory elements of pre-impasse state
relevant to resolving impasse.

� When to apply some knowledge �!

conditions of the chunk

� How to apply some knowledge�!
actions of the chunk

� Applicability �! chunks integrated in
long-term agent memory.

� Usefulness �! abductive knowledge, >
er performance

3

Function, behaviour, structure
aspect of context

� Design Speci�cations

{ Lounge: function = allow-living, requires
nice-view, adjacent to all other rooms.

(<spec> ^room <r1> + &, <r2> + &
<r3> + &, <r4> + &

^adjacent <a1> + & , <a2> + &,
<a3> + &, <a4> + &)

(<r2> ^function allow-living
^name lounge)

(<a1> ^room1 <r2> ^room2 <r1>)}

{ Bedroom: function= allow-sleeping,
requires nice-view

{ Services (Kitchen and Toilet) : function
= allow-sleeping

{ Entrance-lobby : function = allow-entry

� All rooms to avoid noise and dust.

4

Exogenous aspect of context

Dusty Road

Picturesque
Lake

Noisy School

Picturesque Valley

N

l4 l5 l6

Entry to site

l1 l2 l3

l7 l8 l9

Figure 1: Site plan for proposed building

� (<site> ^zone <z1> + &, <z2> + &,
<z3> + &, <z4> + &, <z5> + &, <z6> + &,
<z7> + &, <z8> + &, <z9> + &)
(<z1> ^name l1 ^north <z4> ^east <z2>

^abuts <v>)
(<v> ^is picturesque ^name valley)
(<z4> ^name l4 ^north <z7> ^east <z5>

^abuts <sch>)
(<v> ^is noisy ^name valley)

5

Generative and evaluative
design process knowledge

TIE IMPASSE

TIE IMPASSE

TOP-PS

APPLY-ALL-TIED-OPERATORS

2
3 4

5

LOOKAHEAD

NO-CHANGE IMPASSE

� TOP-PS

{ Propose operator: Place-lounge. 4
instantiations. tie impasse

{ TIE-SPACE = apply-all-tied-operators.

� For all items in tie-space propose
operator to apply îtem

� Reject operators that have infeasible
adjacencies or zones

6

� Apply operators with feasible designs.

� If all operators are applied and all
rooms are not tried

� State no change impasse =
LOOKAHEAD.

� In problem-space LOOKAHEAD
propose operators for the
nextuntried room

� Go to TIE-SPACE

� else

� If all rooms are tried propose operator
evaluate-alternatives

� Evaluate-alternatives evaluates a
global property of the design.

� Evaluation = Good if entrance is at
Front

� If good design then return to
superstate best-preference on parent
operator.

� Propagate best preference upwards by
recursively returning results ito
superstate.

7

Feasible and Infeasible
solutions

E

S L B

S

E L B

S

B L E

E

LB SL

E

S E

B

B

L

E

S

S

LB

B

L

S

E

INFEASIBLE SOLUTIONS FEASIBLE SOLUTIONS

NO-VIEW in
BEDROOM

DUSTY
BEDROOM

GOOD
VIEWS

8

Good Solutions among feasible
solutions

E

S L B

S

E L B

S

B L E

E

LB S

entry entry

ENTRANCE AT FRONT = GOOD

entry
FEASIBLE SOLUTIONS

9

L
ea
rn
in
g
R
esu

lts

E

E

L E*
E

B L B

L L L
 allow_services, allow_entrance)

(1) (2) (3)

(4) (5)

(6) (7) (8)

(1) IF grid-pattern = shaded area in drawing
(2) + room-placement-order = (L,B,E,S)
(3) +function(L,B,E,S) = (allow_living, allow_sleeping,

(4) + entry_to_site_from north

(6) + L in drawn position
(5) + specification = (L,B,E,S)

THEN alternative (7) is the best.

(1) + room-placement-order = (B,E,S) + (4) + (6) + (3)

THEN alternative (5) is the best
+ (5) + B in drawn position

(1) + room-placement-order = (E,S) + (4) + (6)
+function(E,S,L) = (allow_entry, allow_services
+ * = any room + E and * in drawn positions
+ specification = (L,E,S)

(1) + function(E,S, L) = (allow_services, allow_sleeping

+ E in drawn position + specification (L,E,S)
THEN any zone is the best

allow_living) + (4)

chunk-8

chunk-6

chunk-4

chunk-2

THEN design alternative (2) is the best

1
0

An example chunk
soar> p chunk-8

sp {chunk-8

:chunk

(state <s1> ^problem-space <p1> ^site <s2> ^current-room <c1>

^specification <s3> ^placement-order <p2> ^placement-order <p3>

^placement-order <p4> ^operator <o1> + ^operator <o2> +

^operator <o3> + ^placement-order <p5> ^design <d1>)

(<p1> ^name top-ps)

(<s2> ^entry-to-site-from north ^zone <z1> ^zone <z2> ^zone <w1>

^zone <n1> ^zone <z3> ^zone <w2> ^zone <n2>)

(<c1> ^function allow-living)

(<s3> ^room <c1> ^room <r1> ^room <r2> ^room <r3>)

(<r1> ^function allow-services)

(<r2> ^function allow-sleeping)

(<p2> ^room <r1>)

(<p3> ^next <p2> ^room <r3>)

(<p4> ^room <r2> ^next <p3>)

(<o1> ^room <c1> ^zone <z1>)

(<o2> ^room <c1> ^zone <z2>)

(<o3> ^room <c1> ^zone <w1>)

(<r3> ^function allow-entry)

(<p5> ^next <p4> ^room <c1>)

(<z1> ^west <w1>)

(<w1> ^west <z2> ^north <n1>)

(<z2> ^east <w1>)

(<n1> ^south <w1> ^west <w2> ^north <n2>)

(<z3> ^west <n1>)

-->

(<s1> ^operator <o3> = ^operator <o3> >)

}

11

Gold

� Situated learning modelled through
chunking encapsulate what design move
to make in a given context.

� In
uencing context elements = LHS of
chunk = When to apply design
knowledge, How to apply design
knowledge = RHS.

� Generative and evaluative design
knowledge has been converted to
abductive design knowledge which
matches the notion of design as
abduction.

� Simple demonstration of situated
learning by chunking in architectural
design.

12

Coal

� Toy problem: Real design problems need
solution space sampling

� Intermediate results: Utility of chunks yet to
be tested for similar problems

� More tuning of representation needed

13

