
Real-time Modeling of Reaction
Time in Soar: Support for

Psychological Models of Fatigue

Randolph M. Jones (rjones@colby.edu)
Computer Science, Colby College

Soar Technology, Inc.
AI Lab, University of Michigan



Basic Goals

• Create a capability to build uniform, real-
time models of behavior

• Incorporate a current model of fatigue as an
optional element of Soar models



Real-time Psychological Models
• The “Soar Theory of Cognition” claims that

decisions in Soar map to a particular time-
scale of human information processing

• It appears that we now have fast enough
technology that we can make Soar models
take as long to make decisions as they are
“supposed to”.

• This may prove especially important for
models of interactive behavior



Changing the Architecture

• A user-configurable parameter sets the
maximum delay per decision

• Each decision incorporates a delay (unless
there is a time overrun)

• The parameter can be set to zero (the
default), leaving current models unchanged



Incorporating a Model of Fatigue

• Fatigue has been found empirically to
impact cognitive behavior in two primary
ways
– General slowing of optimal response time
– Probabilistic distribution of “attentional lapses”

• Both are functions of number of hours awake and
the cosine of the time of day



General Slowing From Fatigue

• Slowing affects optimal response time, so
applies to all cognitive processing

• Simply adjust the time-per-decision
parameter dynamically, according to fatigue
factors

• User-configurable parameters:
– Time of day
– Number of hours without sleep



Attentional Lapsing
• Attentional lapsing occurs with varying

frequency and lapses have varying duration
– Same fatigue parameters as before

• Lapsing does not affect “stimulated”
behavior
– Operators with “^fatigue-lapse *yes*” attached

will be subject to lapses
• I/O will be “turned off” during lapse

– Input-link values will be “frozen”



Implementation

• Parallel implementations under construction
• Tcl interface

– Introduces delays before each decision (using
callbacks)

– Requires Tcl-based I/O
• Kernel interface

– Effects compiled into Kernel using C code


