Visual Soar

John E. Laird
University of Michigan

Motivation

[t Istoo easy to make mistakes writing Soar programs.
— Spelling errors on attributes and values
— Attributes on wrong objects

 Itistoo slow to write Soar programs
— Creating operator hierarchies is cumbersome

* Need improved runtime debugging support
— Put off for second version

Basic Design

 Editor inspired by Visual C++, TAQL, ViSoar

e Three editor windows

— Operator Hierarchy Editor
 Directly support task decomposition

— State Map Editor [multiple]
« Add “strong” typing during development

— Rule Editor [multiple]
e Semi-structured

1

& 0 0 0 0

=

= appeoach-enemy
= strafe-direction
simple-attack
= glabhorations
= approach-gnemy
= glede-cut

= stay-put

Operator Map

e Displays hierarchical structure of operators
» Automatically creates underlying folders & files

 Actions to operators:
* Add, Move, Remove, Change Name
 Create Alias
o Select

* Changes view in state and rule windows

Data Map: Align-room !El

= natme explore-room *|
& operator

= name aligh-rootn

= direction north south east west a e a p

dr superstate
T 10
o mnput-link
T item

classname [symbl) » Displays structure of current state

range [float]
angle-off * Provides access to superstate and top-state

sensor
= wizihle [hoolean]

craa 0O

= infront [boolear] Supports semantic error checking
o Supports fast rule creation.

LE

origin
o entity

= name [symhbol]
classname [symbol]
health [integer]
wvelocity
range [integet]
origin

02 00

 Actions to states:
* Add, Move, Remove, Change
o Set value type and range
e Create pointer to existing structure

& output-link
= thrust forward bacloward off
= aidestep left off right
= face [float]
= speed on off
& top-state
& map
= cutrent-rootn <rootn=
= current-door <door=
{f foofm <Sroofm®
= explored ves
= type hall rootm
= initialized east-west north-south
o wall
= zide north south eastwest
= ¥ [mteger]
= v [integet]
% door <door=

& item

EIEIE. 1| I ¥

R\«C»i

rule window align-—-window

<3 “name explore-room)

[<3>» “operator <ox + =)
(<o “hname align-roorm
“*direction)}

= perator <ox :|
[<ox “name align-room
“direction <dir>)

e Displays operator rules

e Full text editing

o Partially filled in templates using operator information
 Real-time syntax and semantic checks

e Point-and-click addition of state structure

Plans

* Develop prototype editor this summer using Java
— Use JFC for many of the components
— Jon Bauman, Brad Jones

