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Motivation

[t Istoo easy to make mistakes writing Soar programs.
— Spelling errors on attributes and values
— Attributes on wrong objects

 Itistoo slow to write Soar programs
— Creating operator hierarchies is cumbersome

* Need improved runtime debugging support
— Put off for second version




Basic Design

 Editor inspired by Visual C++, TAQL, ViSoar

e Three editor windows

— Operator Hierarchy Editor
 Directly support task decomposition

— State Map Editor [multiple]
« Add “strong” typing during development

— Rule Editor [multiple]
e Semi-structured
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Operator Map

e Displays hierarchical structure of operators
» Automatically creates underlying folders & files

 Actions to operators:
* Add, Move, Remove, Change Name
 Create Alias
o Select

* Changes view in state and rule windows
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 Actions to states:
* Add, Move, Remove, Change
o Set value type and range
e Create pointer to existing structure
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e Displays operator rules

e Full text editing

o Partially filled in templates using operator information
 Real-time syntax and semantic checks

e Point-and-click addition of state structure




Plans

* Develop prototype editor this summer using Java
— Use JFC for many of the components
— Jon Bauman, Brad Jones




