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Intelligent Agent Bottleneck
• High-fidelity behavior requires lots of knowledge

– 5,200 rules for TacAir-Soar = medium-fidelity
• Building knowledge-rich agents is very costly

– > 18 person years for TacAir-Soar
• Where does all the time go?

– Knowledge Acquisition, design, implementation, testing,
debugging, extension, refinement, redesign, …

• Solution: Automatic Knowledge Generation

Standard KA          Automatic KA             Supervised learning       Unsupervised learning

Expert Effort
Research Effort

Learning by Observation
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Problem Statement
• Develop task performance agents in complex domains

• Transfer expert’s performance knowledge to agent.
– Expert doesn’t communicate knowledge or learn tools
– Programmer doesn’t become expert
– Generate performance knowledge that matches expert

• Solution: Learning by Observation
– Expert just performs the task
– Programmer only learns a few details
– Knowledge is based on expert’s behavior
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Approach
• Capture multiple traces of human behavior

– Sensory data, active goals, actions

• Induce underlying knowledge
– Rules for selecting & applying hierarchical operators

• Built on ideas from Behavior Cloning (Sammet et al.)
– Add annotation of current operators/goals
– Include more domain and mission information
– Generate more complex and flexible execution structures
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What is learned?
• Operator proposal productions

– LHS: external sensors, internal features, operator hierarchy
– RHS: operator proposal

• Operator application productions
– LHS: external sensors
– RHS: external action

• Goal achieved productions
– LHS: external sensors, internal features, operator hierarchy
– RHS: creates internal features (<OP>-goal-achieved *YES*)
– Persistent and non-persistent features

• Use I-support and O-support
• Learn operators to remove persistent features
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How are Operators Learned?
• Specific to General learning algorithm
• Pre-conditions and Action conditions

– First operator selection: Everything is a pre-conditions
– Subsequent selections: Remove anything not matched
– Result: Most specific set of conditions true at every selection

• Goal conditions
– First operator termination: Everything that changed recently

• Recent Changes Heuristic
– Subsequent terminations: Remove anything that didn’t change
– Result: Most specific set of conditions that changed just before

every termination
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Task Statistics
• Behavior Trace Statistics

– Racetrack->Racetrack->Intercept->Racetrack
– 16,000 to 17,000 behavior steps (decision cycles)
– 30 minutes
– 23,000 sensor changes
– 40 actions
– 31 goal annotations

• Task Performance Knowledge Statistics
– 85 productions

• 84% correct, 66% perfect (just like hand coded)
– 24 operators (4 level hierarchy)
– learned from 4-8 behavior traces
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Productions by Type
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Behavior Capture in Action
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Nuggets and Coal
• Nuggets

– Complex tasks are being successfully learned
• Observations of software agents

– Observation is more efficient than hand-coding
– Less is required of experts and programmers

• Coal
– Each behavior must be observed a few times
– Isn’t robust enough to handle human experts well

• Timing of actions and annotations
• Depends on reliable responses to goals

– Don’t know if we can learn everything required
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Future Challenges
• Improving KnoMic to correctly learn all of intercept

– Improve interface and learning algorithm

• Improving robustness for human interactions
– Hard to distinguish errors in behavior vs. delays by expert

• Automatically learning hierarchy
– Can we eliminate need for human to annotate behavior?


