Learning by Observation In
Complex Domains

Michael van Lent and John Laird
Artificial Intelligence Lab
University of Michigan
1101 Beal Ave.

Ann Arbor, Ml 48109
{vanlent,laird}@umich.edu

University of Michigan Al Lab 19th Soar Workshop




Intelligent Agent Bottleneck

High-fidelity behavior requires lots of knowledge
— 5,200 rules for TacAir-Soar = medium-fidelity

Building knowledge-rich agents is very costly
— > 18 person years for TacAir-Soar

Where does all the time go?
— Knowledge Acquisition, design, implementation, testing,
debugging, extension, refinement, redesign, ...

Solution: Automatic Knowledge Generation

Learning by Observation

Research Effort
Expert Effort

Standard KA Automatic KA Supervised learning Unsupervised learning
University of Michigan Al Lab 19th Soar Workshop




Problem Statement

» Develop task performance agents in complex domains

* Transfer expert’s performance knowledge to agent.
— Expert doesn’t communicate knowledge or learn tools
— Programmer doesn’t become expert
— Generate performance knowledge that matches expert

« Solution: Learning by Observation
— Expert just performs the task
— Programmer only learns a few details
— Knowledge is based on expert’s behavior

University of Michigan Al Lab 19th Soar Workshop




Approach

o Capture multiple traces of human behavior
— Sensory data, active goals, actions

 Induce underlying knowledge
— Rules for selecting & applying hierarchical operators

 Built on ideas from Behavior Cloning (Sammet et al.)
— Add annotation of current operators/goals
— Include more domain and mission information
— Generate more complex and flexible execution structures

University of Michigan Al Lab 19th Soar Workshop




What 1s learned?

e Operator proposal productions
— LHS: external sensors, internal features, operator hierarchy
— RHS: operator proposal

o QOperator application productions
— LHS: external sensors
— RHS: external action

e (Goal achieved productions
— LHS: external sensors, internal features, operator hierarchy
— RHS: creates internal features (<OP>-goal-achieved *YES¥*)

— Persistent and non-persistent features
» Use I-support and O-support
e [earn operators to remove persistent features

University of Michigan Al Lab 19th Soar Workshop




KnoMic System Structure

_Percepts »

s Actions

Rarameters

Rules for selecting
& applying
Learning | operators

System

University of Michigan Al Lab 19th Soar Workshop




How are Operators Learned?

« Specific to General learning algorithm

» Pre-conditions and Action conditions
— First operator selection: Everything is a pre-conditions
— Subsequent selections: Remove anything not matched
— Result: Most specific set of conditions true at every selection

e Goal conditions

— First operator termination: Everything that changed recently
» Recent Changes Heuristic

— Subsequent terminations: Remove anything that didn’t change
— Result: Most specific set of conditions that changed just before
every termination

University of Michigan Al Lab 19th Soar Workshop




KnoMic System Structure

Percepts Actions

A 4

Mission and
Domain parameters

>

University of Michigan Al Lab 19th Soar Workshop




Task Statistics

e Behavior Trace Statistics
— Racetrack->Racetrack->Intercept->Racetrack
— 16,000 to 17,000 behavior steps (decision cycles)
— 30 minutes
— 23,000 sensor changes
— 40 actions
— 31 goal annotations

» Task Performance Knowledge Statistics

— 85 productions
» 84% correct, 66% perfect (just like hand coded)

— 24 operators (4 level hierarchy)
— learned from 4-8 behavior traces

University of Michigan Al Lab 19th Soar Workshop




Productions by Type

N
ol

O Not Working/Untested
B Working
8 perfect

)
c
o

=
o
>

=]
o
S
o

N
o

Proposal Action

University of Michigan Al Lab 19th Soar Workshop




Behavior Capture in Action

Task Knowledge Generation

m Knowledge
Generation
O Learn
Racetrack
_ T - T H T H T T 1

Learning Learning Expert 1 Expert 2 Expert 3 Expert 4
(10x) (1x)

Minutes

University of Michigan Al Lab 19th Soar Workshop




Nuggets and Coal

e Nuggets

— Complex tasks are being successfully learned
» Observations of software agents

— Observation is more efficient than hand-coding
— Less is required of experts and programmers

e Coal
— Each behavior must be observed a few times

— Isn’t robust enough to handle human experts well
» Timing of actions and annotations
» Depends on reliable responses to goals

— Don’t know if we can learn everything required

University of Michigan Al Lab 19th Soar Workshop




Future Challenges

* Improving KnoMic to correctly learn all of intercept
— Improve interface and learning algorithm

* Improving robustness for human interactions
— Hard to distinguish errors in behavior vs. delays by expert

o Automatically learning hierarchy
— Can we eliminate need for human to annotate behavior?

University of Michigan Al Lab 19th Soar Workshop




