Brief Introduction to ACT-R for Soarers:
Soar and ACT-R Still Have Much to
Learn from Each Other

Richard M Young

Psychology Department
University of Hertfordshire

Talk presented at 19th Soar Workshop
University of Michigan, Ann Arbor
21st-23rd May 1999

ACT & Soar, SW19, 22.5.99 — 1

Overview and Background

* This talk is in two parts

1

2

A v short introduction to ACT-R (John L suggested)
(definitely non-standard: specifically for Soarers)

A partial comparison between Soar and ACT-R,
arguing that they both still have crucial things to gain
from the other

» How | found myself in this position ...

this past semester, I've taught a new option on
Cognitive Modelling to final-year Cog Sci u/gs
decided to base it heavily on ACT-R (brief look at
other architectures and issues t00)

I've had to learn ACT-R as we go along (a good
forcing function, but | wouldn’t really recommend it)
I'll be attending the ACT-R summer school this year

ACT & Soar, SW19, 22.5.99 — 2

Introduction to ACT-R

A long history of books and architectures (Anderson
1976, 1983, 1990, 1993)
— some “implemented”, some not

A new book: J R Anderson & C Lebiére (1998),
The Atomic Components of Thought. Erlbaum.

— very different flavour to previous versions of ACT
— 1998 book:ACT + UTC book: Soar

There's

— a web site <http://act.psy.cmu.edu>

— a good on-line tutorial (many of the models overlap
with those in the book)

— the book models are themselves available on-line

— there’s an annual 2-week summer school, etc.

In this talk, by “ACT” | mean ACT-R 4.0, as described in

the book

— the actual software can be made less constrained,
more flexible, more “standard production system”

ACT & Soar, SW19, 22.5.99 — 3

Characteristics of ACT-R

« ACT has a symbolic aspect (symbolic memory and
production system), realised over a subsymbolic
mechanism.

— “subsymbolic” means “squishy”: real-valued
quantities and continuous maths; networky; a bit
connectionist-like; activations, strengths, etc.

» There is an underlying theory, called rational analysis
(Anderson, 1990, The Adaptive Character of Thought)
— provides a non-arbitrary basis for design decisions

about the subsymbolic mechanisms.

Rational analysis involves

1 Making evidence-based assumptions about the
statistical structure of the environment.

2 Deriving — mathematically, lots of Bayesian
statistics — the optimal strategies for dealing with
such an environment.

3 Assuming that those optimal strategies describe
approximately what the human cognitive system

does.

ACT & Soar, SW19, 22.5.99 — 4

Structure of the ACT Architecture

This page shows Figure 1.2

from Anderson & Lebiere (1998)

ACT & Soar, SW19, 22.5.99 — 5

Memories

Has two (main) memories: procedural and declarative

Procedural memory is long-term, and holds productions
(i.e. production rules)

Declarative memory is long-term, and holds chunks
— an ACT chunk is very similar to a Soar object

Note that these are both static, quasi-permanent

memories:

— can be added to only by learning, not by RHS
actions

— items once there tend to remain (unless decay)

There is also a goal-stack

— which also holds chunks (encoding goals)

— only the top (current) goal is visible

— its slots are highly dynamic: writeable by RHS
actions

— an admitted weakness of ACT is that currently the
goal stack is effectively outside of the theory

The correspondence is something like this:
ACT +7? Soar
proc mem & PM
decl mem - PM

ACT & Soar, SW19, 22.5.99 — 6

goal stack o WM

ACT & Soar, SW19, 22.5.99 — 7

Productions

Productions have conditions and actions, as we’d
expect, but the behaviour is more restrictive than Soar’s
— grainsize = Soar operator (default .05 sec)

The main actions on the RHS are to
— write (change) a slot (= attribute) of the current goal
— manipulate the goal stack (push, pop, change)

First condition of every rule is a test against current
goal.

The (zero or more) further conditions consist of
retrievals against decl memory:

goal-test & retrieval1l & retrieval2 ... --> action & action

Conflict resolution (which we’ll describe in a moment)

selects a single rule to (try to) fire, based solely on the

goal test. For the chosen rule, the process is:

— match goal test to current goal (bind vbls, etc.)

— attempt to match retrieval1 condition against decl
mem; if fail, then rule fails (no backtracking)

— attempt to match retrieval2 condition ... etc.

— perform RHS actions

ACT & Soar, SW19, 22.5.99 — 8

« If the rule fails, try the next rule in conflict resolution
order. If all fail, then pop the current goal with failure.

ACT & Soar, SW19, 22.5.99 — 9

Conflict Resolution

» Conflict resolution is handled subsymbolically, and puts
rules (NB not instantiations) in order of preference, then
picks the top one

« For each rule, compute the expected gain
E=PG-C

P probability that will eventually attain goal if fire this

production
value of the goal (usually in units of time)

O ©

total cost of reaching the goal by a route that
includes firing this production (same units as G)

ACT & Soar, SW19, 22.5.99 — 10

Quantities Underlying Expected Gain

E=PG-C

P=qr

q probability that this production will fire successfully
r probability that will be able to complete the rest of
the route to the goal

C=a+b
a cost of firing this production (+ achieving any
subgoals + carrying out any external action)
b cost of the rest of the route to the goal

h _C\\
q * a + b
this rest this rest
prod’n prod’n
Default: 1.0 1.0 0.05(+) 1.

Noise is added, both for tie-breaking, but also for deeper
reasons based on rational analysis (cf. “masking”)

ACT & Soar, SW19, 22.5.99 — 11

Learning Declarative Chunks
and Productions

* Learning “chunks” (items) in decl memory is simple &
uniform: each time the goal stack is popped with
success, the popped goal becomes a chunk in DM
— or boosts activation of an existing chunk

» Perceptual encoding is the only other source of
declarative knowledge.

» Learning productions is neither simple nor uniform.

Basically, you form a special kind of object called a
“‘dependency”, which effectively describes the rule you
want to learn. You push that dependency as a subgoal,
and when you pop it, the rule is acquired in PM.

— cf. the build command in some earlier prod’n sys

Soarers would have things to say about that
mechanism, not all of it complimentary. (But more on
that later.)

« However, it is capable of learning all 6 kinds of rules:
{modify goal | not} o {push | pop | neither}

ACT & Soar, SW19, 22.5.99 — 12

Learning Declarative Parameters

The subsymbolic parameters associated with decl
chunks are

— base-level activations

— strength of associations

They are changed by usage, but not by success/failure.
Each chunk; has an activation level, A;, given by

A = B + ZWiSji
j
Activation is interpreted as a measure (“log posterior
odds”) that the chunk will be used to match to a
production in the next cycle. “Learning ... comes down
to using past experience to estimate the quantities these
parameters are supposed to reflect.”

B is the chunk’s base-level activation, and reflects “how
recently and frequently it is accessed”.

Based on rational analysis, we use
-d
B = log() t)
k

where the tx are the times since the chunk was

encountered, and d is a decay parameter, default 0.5.

ACT & Soar, SW19, 22.5.99 — 13

Learning Decl’ve Parameters, cont.

Wi is the source activation of the jth filled slot of the

current goal.

If the goal has n filled slots, the source activation of
each is taken to be 1/n. This is not subject to learning.

The Sj; is the strength of association between the jth goal

slot and the chunk. It is “a measure of how often the
chunk has been needed when j was an element of the
goal’. It “can be thought of as an estimation of the likeli-
hood of j being a source present if the chunk is retrieved”.

In other words, roughly, it measures the extent to which
goal slot j and chunk i “go together”.

When a chunk is created, it is given default values for
Sji. With experience as the model runs, these S;; are

adjusted towards an estimate of their true values.

To complete the story on rule firing: With multiple

matches, the chunk which gets retrieved is the one with

the highest activation, A,

— With noise, the choice is partly probabilistic — a
“soft max” — similar to that for conflict resolution

ACT & Soar, SW19, 22.5.99 — 14

Learning of Procedural Parameters

g is the probability that a particular production will
successfully apply. Suppose we know how often it
applies successfully and how often it fails, then we have

_ Successes
9 = Successes + Failures

ACT takes the view that the number of successes, say,
includes both successes before now (prior successes)
and successes met during the running of the model
(experienced successes). So the formula becomes

_ prior successes + experienced successes
~ prior suc + exp suc + prior fail + exp fail

A similar argument and formula for r, except of course
that successes are the “eventual successes” and the
failures are the “eventual failures”, where eventual refers
to what happens after the firing of this rule, with regard
to achieving the goal (or not).

Similarly for estimating the cost parameters, a and b.

__efforts > efforts
~ no. of firings ~ successes+failures

A time-based decay version of these formulas can be
used, as for base-level activation.

ACT & Soar, SW19, 22.5.99 — 15

ACT Model of
Menu-Scanning Experiment

Anderson, Matessa & Lebiére (1997) model of an
experiment by Nilsen (1991), also modelled in EPIC by
Kieras & Meyer (1997) in same issue of journal.

S puts mouse on menu header: click, and a vertical
menu appears, digits 1-9 in random order. With a target
item specified , have to move mouse to it and click it.

Because of random order, have to scan the menu
visually to find target. Ss tend to scan vertically
downwards, and tend to move the mouse along with the
scanning. So, once found, there is little variation in
mouse movement time. The variation in time comes
from how far need to scan through the menu.

Assumptions of the ACT model are in line with those of
an earlier model dealing with letters and numbers.
Letters and numbers are assumed to be composed of a
number of features. McClelland & Rumelhart (1981), for
a famous model of “interactive activation”, proposed a
definite set of features for upper-case letters and
numbers, and this is what the ACT model uses too.

ACT & Soar, SW19, 22.5.99 — 16

ACT Model: Doing the Task

« The ACT model of how the task gets done is very
simple.
1) Choose a random feature of the target digit.
2) Shift attention downwards to next occurrence of that
feature.
3) If that item is the target letter, then move mouse to it
and click.

* The model has just two interesting rules:

Hunt - Feat ur e
| F the goal is to find a target
that has feature F
AND there 1s an unattended
obj ect bel ow the current
| ocation with feature F
THEN npove attention to cl osest

such obj ect

Found- Tar get

| F the goal is to find a target
AND the target is at loc’n L

THEN nove nouse to L and click

ACT & Soar, SW19, 22.5.99 — 17

Matching the Data

* The empirical data are that total reaction time varies as
a linear function of target position, with a slope of 103
msec per position.

* The number features are such that with p = .53, a
randomly chosen feature of one number will occur as a
feature in another, given, number. Using the figure from
the Sperling experiment of 185 msec to switch attention,
the ACT model will predict a linear function with a slope
of

185 o .53 = 98 msec per position.

(Compare with 103 msec in data.)

ACT & Soar, SW19, 22.5.99 — 18

Stressing the Model: Distractors

« If the model is right, it should also predict the effect of
using different distractors. Instead of searching for a ‘6,
say, in a background of other digits, Ss could be asked
to find a letter in a background of digits.

» The probability of a random letter feature being shared
with a given digit is .42.

» So, the ACT model predicts a slope of
185 o .42 = 78 msec per position.

(Actual slope is 80 msec.)

NOTE

» There is a distinctive style of using the ACT model:

— The production system model is (ridiculously)
simple, and so is the task.

— S0, no great achievement to say “Look, an ACT
model can do the task”.

— The model serves as basis for a simple quantitative
analysis.

— The model is to be assessed on its quantitative fit to
the empirical data.

ACT & Soar, SW19, 22.5.99 — 19

Soar and ACT-R

* In this second half of the talk, | want to argue that each
of Soar and ACT-R still have much to gain from the
lessons of the other.

» |'ll play it mostly as “Here’s an example where Soar can
learn from ACT"” and “Here’s one where ...”
— but | also want to emphasise that in many cases the
situation is more complex (and more interesting)
than “Soar good, ACT bad” or vice versa

HEALTH WARNINGS
« My own personal views, etc. ...

 In this talk, “constraint” means a positive term, a virtue
— see discussion in UTC or, e.g., Howes & Young
1997

WARNING: R18 certificate

Some of what follows may be controversial

 Warning: I'll probably several times say “Soar” when |
mean “‘ACT”
— what kind of cognitive model or architecture would

ACT & Soar, SW19, 22.5.99 — 20

explain that kind of persistent error?

ACT & Soar, SW19, 22.5.99 — 21

ACT 0O Soar: Fine-Grain Data

1 ACT allows us to write quick & simple models for quick

& simple tasks

— e.g. the menu scanning task: v simple prod'n
system, but basis for interesting predictions, with
close contact to empirical data

— in class | used a 1-rule model, “think of a name for a
dog”: get simple but non-trival effects, e.g. of
learning

2 ACT models fit to actual performance times and error
rates
— track small shifts with experimental conditions
— fit fine-grain effects on latencies

* Mostly, with Soar this has not been done. Closest:

+ Wiesmeyer, visual attention. Impressive integration
across experimental paradigms with single 50 msec
constant. But
— weak on graded effects (& never published

properly!)

» Miller & Laird, SCA: graded effects, and human-like
curves. But

ACT & Soar, SW19, 22.5.99 — 22

— not aim at actual quantitative fit (go for surprise
value)
— serious problems (e.g. saturation)

ACT & Soar, SW19, 22.5.99 — 23

Soar [0 ACT: Rule Learning

3 Soar’s (rule) learning mechanism is elegant, simple,
ubiquitous, automatic (architectural), and rational.

» ACT's rule learning is reflective (post-event) only, too
deliberative, arbitrary (lack of constraint), knowledge-
based instead of architectural (self-programming)

» Anderson & Lebiére raise various objections to Soar’s
learning mechanism (“[data chunking] a problematic

aspect of Soar”; “too many productions”; “excessive
production rule formation”)

« But they don’t stand up

— Soar’s data chunking is an important source of
constraint

— supports learning as a side-effect of performance

— linked to rational aspects of cognition (Young &
Lewis, 1999)

— not even clear that a (non-arbitrary) ACT wouldn’t be
subject to same phenomenon

— what on earth is “too many” productions?

— a similar mechanism is anyway used for ACT'’s
declarative learning

ACT & Soar, SW19, 22.5.99 — 24

Soar ACT: Modelling a Subject

4 Anderson & Lebiére say [approximately, | can’t find the
quote] “An ACT model is always a model of a human S
in an experimental situation”

« This is a crucially important point, but decidedly 2-edged
ACT 0O Soar

* Means that an ACT model always grounded in empirical
data, and can be put into contact with those data.

Soar [1 ACT

» But also a limitation of ACT. Never gets to deal with
human as an autonomous agent with full range of
capabilities
— only some of which get tapped, selectively, in setting

of a psychological experiment
— Dbasically, an “ecological validity” point

» Has negative impact on aspects where Soar strong
— functionality
— integration across different aspect of cognition
— capability-based accounts of cognitive performance

ACT & Soar, SW19, 22.5.99 — 25

Soar ? ACT: Constraints

5 Because of its focus on constraint, Soarers can play the
game of “Listening to the architecture”
— not “how do | think people do this task?”, but “given
the task, how would Soar do it?”

 Until recently, couldn’t consider doing this with ACT
— too much choice of mechanism & parameters
— too little constraint

« But with ACT-R 4.0 now becoming possible, and to
some extent being done, i.e. write simple model “to do”
task, see what ACT predicts about performance &
learning

» ACT now arguably more constrained than Soar

* Productions very constrained
— conflict resolution only on goal test
— no backtracking in retrieval; etc.

» Severe constraints on dynamic task-related information
— decl mem is basically a permanent store: info there
subject to activation & decay effects
— (soft) constraints on goal slots: total activation
divided among # filled goal slots, so if too many,

ACT & Soar, SW19, 22.5.99 — 26

may not retrieve intended items from memory

ACT & Soar, SW19, 22.5.99 — 27

Soar ?00 ACT: Lean Architecture

6 Soar clearly wins on having a lean, fixed architecture
— no choice as to what mechanisms to invoke, or what
to appeal to for a particular task or data set

« Might argue, therefore, that Soar wins on constraint
— however, I'm not entirely convinced

* Problem seems to be that Soar’'s home territory is so
distant from many tasks of interest, that lots of ingenuity
is needed in order to see how it would do the task at all
e.g.SCA on concept learning

« Consequently, leaves room for lots of different routes,
depending upon imagination of analyst
— hence, not effectively constrained

* View “all cognition as problem solving in a problem
space”
— leads to difficulty where, to be honest, view doesn’t
fit

ACT & Soar, SW19, 22.5.99 — 28

Soar [0 ACT: Depth of Explanation

7 ACT lends itself to “data modelling”, which provides little
by way of “explanation”

— details of many ACT set by what look like convenient
ways to match the data, rather than by arguments
based upon functionality

— can be subtle (e.g. Anderson & Liebiéere, p.330)

— history of too much ad hoc parameter tuning (though
now much improved)

» Soar (at least, when used carefully & well) lends itself to
deeper questioning about “How does it come to be doing
the task like that?” E.g.

— attempts at performing task based on instructions

— the data-chunking story, and its relation to learning
from instructions

— the NL story

» This is an important issue for integration

ACT & Soar, SW19, 22.5.99 — 29

ACT [0 Soar: Easier to Learn

8 We've been told several times that Soar is too hard to
learn and that ACT is easier
— was one reason why | picked ACT for my u/gs
— also, good support from textbook and web tutorial

* I’'m not entirely convinced. Story goes something like
this:

» There’s much more to learn about ACT
— far more variety of mechanism
— rules, chunks, conflict resolution, activations,
associative strengths, noise, rule strengths (haven't
mentioned that), decay, probability estimates, ...
— book (pp.99-100) 33 standard numerical
parameters; (pp.432-3) 20 basic equations

« However, the crucial difference (I think) is that ACT
doesn’t have any brick walls and vertical cliffs on its
learning curve, whereas Soar clearly does.

You can know just a little about ACT, and write simple
models. Then learn some more, expand your repertoire.

« Seems not to be true of Soar
— though recent tutorials (e.g. Eaters) are trying hard

ACT & Soar, SW19, 22.5.99 — 30

to move in that direction

ACT & Soar, SW19, 22.5.99 — 31

ACT [0 Soar: Simple Maths Models

9 ACT lends itself well to a variety of approximate
mathematical models

» Ranging from simple arithmetic
— menu scanning model
to sophisticated Bayesian analysis

» Getting an analytical grip on Soar models (beyond just
“60 msec per operator”’) has proved elusive.

ACT & Soar, SW19, 22.5.99 — 32

