Learning Task Performance Knowledge by Observation

Mike van Lent

Marina del Rey Saturday, May 13, 2000

Motivation

- Task performance agents are becoming common
 - Training simulations, Computer games
- Knowledge acquisition for these agents is expensive
 - 10 man/years for TacAir-Soar
- There is a continuum of KA approaches

Observation as a knowledge source

- Doesn't require expert to make knowledge explicit
 - Unlike standard KA, automated KA and instruction
- Doesn't require expert to learn new tools
 - Unlike automated KA
- Doesn't require knowledge engineer to learn task
 - Unlike standard KA
- Results in knowledge that matches human behavior
 - Unlike unsupervised learning
- Doesn't require any initial knowledge
 - Unlike instruction
- Rich and focused knowledge source

Task Knowledge Representation

- Based on Soar's knowledge representation
- Operator Hierarchy
- Operator consists of:
 - Pre-conditions (potentially disjunctive)
 - Includes negated test for goal-achieved feature
 - Conditional Actions
 - Action attribute and value (pass-through action values)
 - Goal conditions (potentially disjunctive)
 - Create goal-achieved feature
 - Persistent and non-persistent goal-achieved features
- Task and Domain parameters are widely used to generalize the learned task knowledge

L-by-O Framework

KnoMic

Experiments

- Evaluation Criteria
 - Coverage of learned task knowledge
 - Realism of learned task knowledge
 - Efficiency of learning by observation vs. standard KA
- Experiment 1: TacAir-Soar
 - Main domain for evaluating KnoMic
- Experiment 2: Quake II-Soar
 - Framework approach makes supporting new domains easy
- Task Analysis: Towers of Hanoi
 - Example of an internal feature that can't be learned
 - Solutions: Instruction, Historical sensors,...

Realism

Efficiency

Contributions

- Learning-by-observation framework
 - Defines data structures and flow of information
 - Allows many different learning-by-observation systems
- Criteria for evaluation of KA systems
 - Coverage, Realism, Efficiency
- Evaluation of KnoMic (a learning-by-observation sys.)
 - Three domains
- Taxonomy of possible errors in an observation trace
- Exploration of one approach to combining observation and instruction

Future Work

- Explore the efficiency of different learning algorithms
 - Negative Instances
- Explore approaches to learning internal features
 - Initial domain knowledge
 - Historical sensors
- Combine instruction and observation
 - Two stage learning process
- Eliminate the need for operator annotations
 - Automatic observation trace segmentation
- Knowledge acquisition tool for the Quake II domain
 - Based on the learning by observation framework

Nuggets and Coal

Nuggets

- Thesis Defense: May 22 at 10:00am
- KnoMic is able to learn most of the task knowledge for a complex domain
- What can and can't be learned is well understood
- Learning-by-observation framework creates lots of exciting ideas for future research
- Observation and Instruction complement each other nicely

Coal

- Internal features are necessary for some domains
- Observation isn't a magic bullet
 - A useful knowledge source to use in conjunction with other sources