Soar Lite:
Designed for Speed

Scott Wallace
Karen Coulter

@ University of Michigan Al Lab 20th Soar Workshop

Motivation

e Meet performance requirements of some
interesting domains

— Video games
— Mobile robots

 Want a embeddable, low-profile version
« Soar/CLIPS comparison revealed two things

— simple modifications can greatly change performance

— some architectural capabilities appear very costly

(} \ University of Michigan Al Lab

Original Design Goals

Increase overall

Create an API

speed

S

Maintain current production semantics

Keep a core set of the architectures capabilities

100% 05% 27
Soar Lite :
immm)>| Release |nmmmd>|>0N >?<-L1te
Platform :
5% Q@ 90%?

@ University of Michigan Al Lab

Our Approach

@ Modularize the Soar Architecture

— Determine a set of “core” functionality
— Define a set of modules

— Allow users to specify which modules should
be included

® Benchmark the Architectural Variants

(} \ University of Michigan Al Lab

Soar’s Core Functionality

* Loading a rete-network

* Allows execution, termination of agents
» Standard decision cycle

» Hierarchical goals

e I/O to and from an external environment

(} \ University of Michigan Al Lab

What was Modularized

o Timing Facilities (Bob Wray)
* High-cost Callbacks
* Learning/Justifications

* Backtracing/GDS Support

(} \ University of Michigan Al Lab

New Modules

* Debugging Facilities
— Adds commands to examine Soar’s internal memory pools

» Timer Verification

— Ensures that timers are reporting non-zero value (i.e. timer
resolution 1s adequately fine)

* Time Tracking by Decision Cycle

— Creates an array storing the time required to complete a set of
decision cycles

« Capture/Replay Input

— Allows reproducible testing in non-deterministic (or otherwise
complex) environments

@ University of Michigan Al Lab

Test Results

7

@ University of Michigan Al Lab

Multi-Tiered API

 Provide a consistent
interface to Soar via Tcl
and C function calls

— simplicity of learning
— 1ncreased accessability

— ease of documentation

extended

@ University of Michigan Al Lab

High Level API

* Reproduce functionality of
TSI interface without Tcl
dependencies

— Allows easy integration into
other U.IL.s

— Uses a common function
prototype

— Takes care of argument
context dependent parsing,
error detection, etc.

@ University of Michigan Al Lab

-

base l

s

Base (Core) API

* Encapsulate minimal
functionality to embed Soar |
within another application High-level

— Provides common ancestors
for functions in the high-

level API

— Uses a typed arguments to
eliminate unnecessary string
parsing and aid integration ~ extended
into other apps.

@ University of Michigan Al Lab

Extended API

« Extend the minimal
functionality of the Base |
API to provide other High-level
commonly used features.

— Provides common ancestors
for functions in the high-

level API -
— Uses typed arguments

extended | base

— Assumes interface printing
capabilities

@ University of Michigan Al Lab

Next Steps

* Complete Remaining 10% of API
functionality

* Complete Documentation

* Feedback
— How should multi-agent support be handled?

— What additional functionality would be useful

— What level of abstraction 1s best for the I/0O
system

(} \ University of Michigan Al Lab

Nuggets and Coal

* Nuggets

— Increases performance significantly in domains which
make heavy use of subgoaling

— Provides a programming interface which is consistent
with the well documented, and familiar TSI interface

 (Coal
— Not MT-Safe

— Some functions have been moved and/or renamed

(} \ University of Michigan Al Lab

