Collaborative Negotiation System based on Argumentation

Hyuckchul Jung

Milind Tambe

Information Sciences Institute & Computer Science Department University of Southern California

{jungh, tambe}@isi.edu

Research Initiative

- Conflicts arise in Teamwork
 - → Agents can access only local(not global) information
 - → Agents' interpretation of the information differs
 - Agents may need to act despite missing information
- Negotiation based on Argumentation
 - → Agents propose/counter-propose with arguments or justifications
- Motivation for Argumentation
 - → Appropriate in collaborative settings
 - Not hide information from teammates
 - Increase the speed and likelihood of agreement
 - → Negotiation over multiple criteria
 - Single numeric quantity may be inappropriate

CONSA: COllaborative Negotiation System based on Argumentation

- CONSA negotiation process
 - → Initial phase
 - Detect conflict & jointly commit to resolving it;
 - Argumentation phase
 - One generates a proposal & the others evaluate the proposal;
 - If no conflict, accept the proposal, else continue argumentation;
 - **→** Termination phase
 - Terminate if conflict resolved or resolution unachievable
 - **→** Exploit STEAM[†] teamwork rules
- Real-time negotiation
 - → Decision theoretic reasoning
 - → To avoid extra communication, pruning inference tree of proposal

[†] M. Tambe, Towards flexible teamwork, JAIR, 7:83-124, 1997

CONSA example

- Implemented example
 - → Helicopter pilot agents which negotiate battlefield positions(resource)
 - → Using Soar with ModSAF simulator
- Firing position negotiation
 - → Each firing position should be at least 1 kilometer apart from the others
 - → Initial phase
 - Agents detect conflict (position interference)
 - jointly commit(establish joint goal) to resolve the conflict
 - **→** Argumentation phase
 - One agent(A1) proposes [move, A1:500m, A2:500m] with justification {Desired distance: 1km, A1: <= 700m, A2: no restriction, Enemy: 5Km, ... }

CONSA example (continued)

- **→** Argumentation phase (continued)
 - The other agent(A2) evaluates the proposal and rejects it with justification $\{A2: \le 400m\}$
 - ▶ A1 generates a new proposal [move, A1:600m, A2:400m] with updated justification
- **→** Termination phase
 - ▶ Either A2 accepts the new proposal
 - Or conflict unachievable
 - A1 or A2 terminates negotiation with justification {Enemy: < 500m}

Computational Model for Argumentation

- Questions for argumentation (especially in large scale)
 - → Performance of different argumentation strategy?
 - → Impacts on convergence in conflict resolution?
 - → Anytime, approximate results in real-time?
 - Overhead of argumentation?
- Need for computational model
 - → Formulate argumentation with Distributed Constraint Satisfaction Problem(DCSP)
 - → DCSP provides a good abstraction
 - → Good DCSP algorithms are available: e.g. Yokoo's multi-AWC(Asynchronous Weak Commitment) algorithm[†]
- Part of DYNAMITE(http://www.isi.edu/dynamite) with Wei-min Shen, Weixiong Zhang

[†]M. Yokoo, K. Hirayama, Distributed constraint satisfaction algorithm for complex local problems, ICMAS '98

Mapping argumentation into DCSP

- Multi-AWC concerns with variable ordering(prioritization) and value ordering(min-conflict)
- Argument is a constraint propagation
- Our approach
 - → Agents communicate their "local constraints (justifications for proposals)" to their neighbors
 - → Interleave constraint propagation with value selection

Cooperative negotiation strategies

- Cooperativeness of an agent
 - → When selecting a value, how much flexibility(# of consistent values/# of domain values) is given to neighbor agents
- Different levels of cooperativeness
 - → C0: original multi-AWC
 - → C1: in good, same as C0; in nogood, best value for higher agents
 - → C2: same as C1 except that, in nogood, cooperative to lower agents in some degree
 - → C3: in good & nogood, best value for higher agents
 - → C4: same as C3 except that, in good, cooperative to lower agents in some degree
- More *cooperativeness*, better *performance*(less *time*)?
- Evaluation with a mapping of firing position example
 - → Criteria: # of constraint checks, # of cycles, distribution of efforts, ...
 - → With different configurations: chain, ring, tree, and grid

I Strategies evaluation

• C3 & C4 are not superior to the other strategies!

Conclusion

- Objective:
 - → Negotiation for conflict resolution
- Collaborative negotiation via argumentation
- Real-time negotiation
- Modeled in DCSP & experimental results