

## A Template-Based and Pattern-Driven Approach to Situation Awareness and Assessment

Weixiong Zhang Randall W. Hill, Jr

**Information Sciences Institute University of Southern California** 

# Lessons Learned from Modeling Intelligent Synthetic Forces



- Intelligent, reactive behavior is not sufficient
  - ➤ Need perceptual attention/tactical situation awareness
  - ➤ Need ability to plan
- Planning is not sufficient
  - ➤ Need to monitor plan execution
  - ➤ Need strategic situation awareness
  - ➤ Need ability to replan
- Continuous planning capability is not sufficient
  - ➤ Need to function as an organization
- Divide and Conquer approach does not work
  - > Situation awareness, planning, execution, monitoring, replanning, collaboration are *highly interdependent*

#### A Definition



#### "Situation Awareness is

- (1) the perception of the elements in the environment within a volume of time and space,
- (2) the comprehension of their meaning, and
- (3) the projection of their status in the near future."

M. Endsley, 1995 (as quoted in NRC study on Modeling Human and Organizational Behavior, Pew and Mavor, ed., 1998)

#### Levels of Situation Awareness



#### Tactical

- Perception for information gathering
- ➤ *Understand* current state (and near-term future)
- → Tends to be task-oriented, reactive, opportunistic

#### Strategic

- ➤ Identify knowledge goals; plan sensing actions
- ➤ *Understand* future (and how it relates to goals)
- → Tends to be goal-oriented, deliberative, abstract

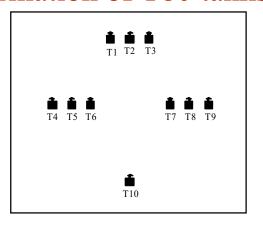
→ A complete agent must have both

## Creating Tactical Understanding

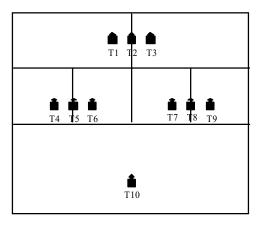


#### Structural analysis

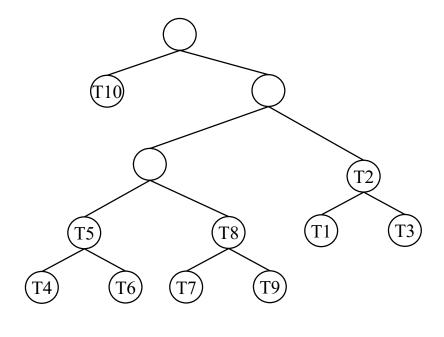
- ➤ What do I see?
  - Identify entity types and groups
    - ◆ Clustering based on type and distance
  - Encode and understand spatial relationships
    - ◆ Use K-D tree representation
- ➤ How do I interpret what I see?
  - Hypothesize formations of entities
  - Hypothesize echelons (organizational hierarchy)
    - ◆ Pattern matching with respect to templates


#### Functional analysis

➤ What are they doing now?

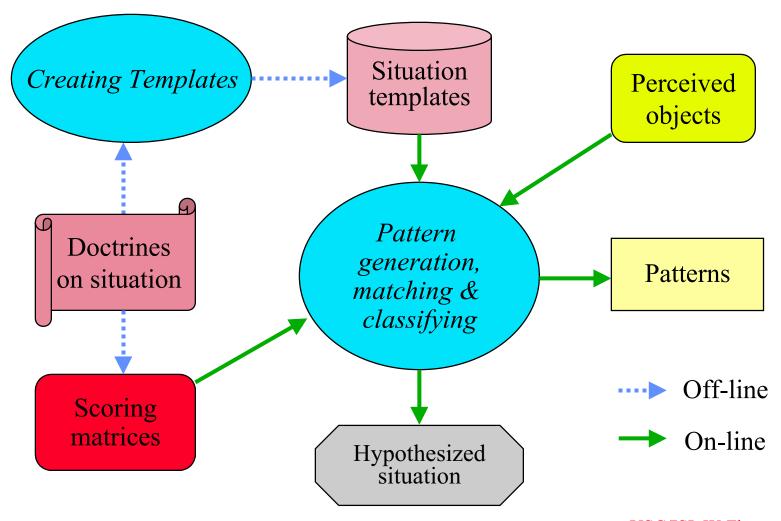

## Encoding Organizational and Spatial Relationship in an Extended kd-tree




#### A formation of T80 tanks



#### A division of space




#### A kd-tree based data structure



# USC INFORMATION SCIENCES INSTITUTE

## A Sketch of the Approach



#### Overview of Procedures



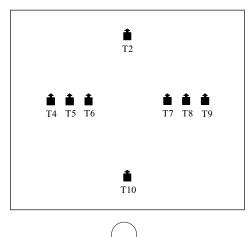
### Construct a template database

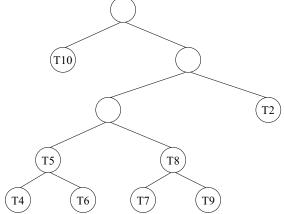
- > Access echelon information
- > Access formation information
- ➤ Encode templates in extended k-d tree format

## Build patterns of observed objects

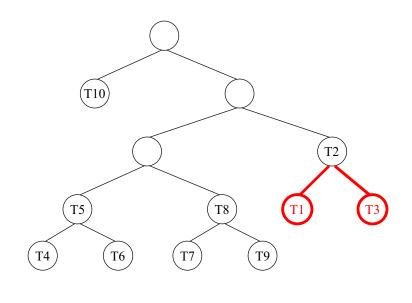
- Pre-select relevant templates based on object types and quantities
- ➤ Build one pattern of observed objects based for each template (its structure and parameters such as unit distances)

#### • Find the best possible situation template


- ➤ Measure the similarity between a pattern and a template (based on the structure of two kd-trees)
- Select the best matched template
- Refine patterns based on situation hypotheses and by collecting more data


## Application

#### Information Collection for Hypothesis Verification




Perceived objects





#### The best-matched template



Action: Search the area around T2

## Summary



- Work in progress
  - ➤ Re-implementing clustering and pattern matching so that it scales well
- Provides primitive way of understanding behavior of groups of others
- Want to extend to groups where there are no templates
  - ➤ Hierarchical (multi-resolution) grouping
  - > Spatial relationships and reasoning
  - ➤ Group behaviors evident