
Soar General Input/Output 
Interface (SGIO)

An Overview
By Brad Jones



Motivation

• Embedding a must
• Library for faster development
• Needed to make SocketIO easier to use and 

understand



Design Goals

• Incorporate SocketIO
• Allow the user to embed the SOAR 

Architecture within the environment
• This change in communication with the 

SOAR Architecture should require minimal 
changes to the code

• The Quake2 must play well using this 
library



SGIO Instantiated

• SGIO is a C++ interface library to handle 
SOAR Architecture input/output

• Mediator between the environment and the 
SOAR Architecture

• Run-time choosing of type of 
communication



Environment

Environment Interface

SGIO

SOAR Architecture

Functional Boundaries



Quake2
Socket Communication

Quake2.exe
(Environment)

Gamex86.dll
(Environment 
Interface)

Function
calls

Function
calls

SGIO Socket Version

Messages
Over SocketSoarside.exe

(Soar 
Architechure)



Quake2
Functional Communication

Quake2.exe
(Environment)

Gamex86.dll
(Environment 
Interface)

Function
calls

Function
calls

SGIO API Version

Function
callsSoar Kernel 

Using Core API



Changes to Code Needed to Use
Socket Version Vs. API Version

• Socket Version
soar = new SIOSoar(

“141.213.12.133”,
7070);

• API Version
soar = new APISoar();



Main Components of SGIO

• Soar class
– Establishes communication with SOAR 

Architecture
• Agent class

– Proxy for SOAR Architecture Agent
• WorkingMemory class

– Layer on top of Agent, just deals with the 
Agent interface



Soar Class (SGIO)

• Sets up some type of communication with 
SOAR Architecture
– APISoar uses the core api
– SIOSoar uses a socket interface
– LogSoar logs calls that you make into the 

interface for debugging



Example Functions: Soar Class

• RunTilOutput
• CreateAgent
• DestroyAgent



Agent Class (SGIO)

• Acts as a proxy
• Keeps WME changes until the agent 

actually needs them
• Keeps a queue of commands that the Agent 

has issued until the environment can 
process them



Example Functions: Agent Class

• AddWME
• RemoveWME
• CommitWMEChanges
• LoadProductions
• Commands
• GetCommand



WorkingMemory Class (SGIO)

• Layers on top of the Agent Class
• Takes care of a lot of the bookkeeping 

associated with Working Memory elements

Agent Class

AddWME
RemoveWME
CommitWMEChanges
LoadProductions
Commands
GetCommand

WorkingMemory Class
Uses



Example Functions: Working 
Memory Class

• Update
• CreateFloatWME
• CreateIntWME
• CreateIdWME
• CreateStringWME
• Commit



Future Work

• Regression Validation of SGIO
• Performance Measurements 
• Debugging Aids
• Better Documentation
• Added Functionality (if needed)



Nuggets and Coal

• Nuggets
– Allows embedding into 

the environment
– It Works 
– Pretty easy to use (I 

think) 

• Coal
– Performance costs?
– Library correctness?

• Works for quake2 but is 
it correct?

– Documentation
– Other Platforms?


