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Motivation

• Embedding a must
• Library for faster development
• Needed to make SocketIO easier to use and 

understand



Design Goals

• Incorporate SocketIO
• Allow the user to embed the SOAR 

Architecture within the environment
• This change in communication with the 

SOAR Architecture should require minimal 
changes to the code

• The Quake2 must play well using this 
library



SGIO Instantiated

• SGIO is a C++ interface library to handle 
SOAR Architecture input/output

• Mediator between the environment and the 
SOAR Architecture

• Run-time choosing of type of 
communication
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Changes to Code Needed to Use
Socket Version Vs. API Version

• Socket Version
soar = new SIOSoar(

“141.213.12.133”,
7070);

• API Version
soar = new APISoar();



Main Components of SGIO

• Soar class
– Establishes communication with SOAR 

Architecture
• Agent class

– Proxy for SOAR Architecture Agent
• WorkingMemory class

– Layer on top of Agent, just deals with the 
Agent interface



Soar Class (SGIO)

• Sets up some type of communication with 
SOAR Architecture
– APISoar uses the core api
– SIOSoar uses a socket interface
– LogSoar logs calls that you make into the 

interface for debugging



Example Functions: Soar Class

• RunTilOutput
• CreateAgent
• DestroyAgent



Agent Class (SGIO)

• Acts as a proxy
• Keeps WME changes until the agent 

actually needs them
• Keeps a queue of commands that the Agent 

has issued until the environment can 
process them



Example Functions: Agent Class

• AddWME
• RemoveWME
• CommitWMEChanges
• LoadProductions
• Commands
• GetCommand



WorkingMemory Class (SGIO)

• Layers on top of the Agent Class
• Takes care of a lot of the bookkeeping 

associated with Working Memory elements
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Example Functions: Working 
Memory Class

• Update
• CreateFloatWME
• CreateIntWME
• CreateIdWME
• CreateStringWME
• Commit



Future Work

• Regression Validation of SGIO
• Performance Measurements 
• Debugging Aids
• Better Documentation
• Added Functionality (if needed)



Nuggets and Coal

• Nuggets
– Allows embedding into 

the environment
– It Works 
– Pretty easy to use (I 

think) 

• Coal
– Performance costs?
– Library correctness?

• Works for quake2 but is 
it correct?

– Documentation
– Other Platforms?


