E"Eﬁ\"isual Soar Development Edition

File Search View Help

[rry-tank
E‘| _firstioad

@=Tall

&= " common

&= [elaborations

% [CJfind-path
|__°‘| elaborations
[init
|__°‘| move-east
|__°‘| rrove-narth
|__°‘| mowe-south
E‘| rrove-west

== map

@ Jwander
D elaborations

|j| move
D turn

|__°‘| turn-around

wander

[wander
= [attr-radar
= [ia
|__°‘| narme: [wander]
©=] operatar
©=] operatar
== [operatar
©=] superstate
==] top-state

|__°‘| trpe: [state]

E

el

wanderturn
File Edit Search Soar

Isp Iwander*propose®turn
[2tate <35> “name wander)
[<3> “io.input-link.blocked <h>)
[<bh> “forward wes)
[<h> ~I << left right >» <dir> } no)
-
(<35>
<0

~operator <ok + =)
“hame turhn
~actions.rotate.direction <dir>)

Visual Saoar

Bradley L. Jo
Jonathan J. Bal

[1ES
Jman

There are no perceivable errors in CiutemplsoanTankSoar2 Sagentsimy-tankiwandenturn. soar

University Of Mi

John-E-Lait

d
chigan

Motivation

e |tistoo easy to make mistakeswriting
Soar programs.

— Spelling errors on attributes and values
— Attributes on wrong objects

e Itistoo slow to write Soar programs.
— Creating operator hierarchiesis cumbersome

Basic Design

« Editor inspired by Visual C++, TAQL, ViSoar
e Three editor windows

— Operator Window
 Direct support for task decomposition

— DataMap
» Add static type checking during development

— RuleEditor
» Text Editing Facilities

[rriy-tank
D _firstload

@] all

& 3 common

@ [elaborations

@ [find-path
|j| elaborations
[init
|j| move-east
D rrave-narth
|j| move-south
D rove-west

@ [map

¢ [Jwander
D elaborations

|j| move
D turn

|j| turn-around

Operator Window

 Displays hierarchical structure
of operators

— Automatically creates
underlying folders and files

e Actionsto operators:
— Add, Remove, Rename
— Open Corresponding Rules
— Open Corresponding DataMap

] wander

@] attr-radar
& io
D name: [wander]

@] operator

@ 7 operator

@ [operator

@ 3 superstate

@ [top-state

|j| type: [state]

» Displays intended structure
of the current state

— Provides access to superstate
and top-state

— Supports static type checking

o Actionsin DataMap
— Add, Remove, Link
— Set value, type and range

[~Jwanderiturn

Rule Editor

File Edit Search Soar

p {wander*propoge*turn

[state <35> “hame wander)

[«3=
[<h=
[<h=

-

(5>
(<o

~io.input-link.blocked <h>)
~forward ves)
A0 = left right => <dir> } no)

“operator <ok + =)
Aname turn
~actiong.rotate,direction <dir>)

e Digplaysoperator rules

* Full text editing

o Partialy filledin
templates using operator
Information

e Syntax and semantic
checks

e Tab-Completion like
facility

e Syntax highlighting

Line: 1

New Features Since Last Y ear

Added a Tab-Completion like facility
Added Syntax Highlighting

Moved to J.R.E. 1.3 (it gives much better
performance)

Copying and Pasting multiple selections in
the DataMap

Visual Soar: Future Plans (this
year)

* More powerful text-editing facilities (more
emacs or vim like or calling third-party
editors to do editing see John Hawkins)

« A way of building sophisticated types out of
simpler ones

Visual Soar: Future Plans (last
year)

More Comprehensive Static Analysis of Rules (being
worked on actively by Sergeg))

Tab-completion like facility (added)

Some Integration with the TSI, source rules from Visual
Soar directly, DataMap vs. Working Memory
Comparisons, Sending commands to Visual Soar through
the TSI to open rule editors (hasn't been worked on but
some support is expected)

More Flexible Operator Layout (transition from tree to
directed graph) (not as useful asinitially thought)

Nuggets And Coal

« Nuggets Cod

— Static-type checking — DataMap entry can be
catches many errors aclumsy process (I
beforehand think the type building

facility could help a

— Frees users from many |ot)
banal tasks — Putting old agentsinto

— Cutsdown on alot of Visual Soar can be
task switching cumbersome (there
overhead doesn’'t seem to be

around this)

