
Visual Soar

Bradley L. Jones
Jonathan J. Bauman

John E. Laird
University Of Michigan



Motivation

• It is too easy to make mistakes writing 
Soar programs.

– Spelling errors on attributes and values
– Attributes on wrong objects

• It is too slow to write Soar programs.
– Creating operator hierarchies is cumbersome



Basic Design

• Editor inspired by Visual C++, TAQL, ViSoar
• Three editor windows

– Operator Window
• Direct support for task decomposition

– DataMap
• Add static type checking during development

– RuleEditor
• Text Editing Facilities



Operator Window

• Displays hierarchical structure 
of operators
– Automatically creates 

underlying folders and files

• Actions to operators:
– Add, Remove, Rename
– Open Corresponding Rules
– Open Corresponding DataMap



DataMap
• Displays intended structure 

of the current state
– Provides access to superstate

and top-state
– Supports static type checking

• Actions in DataMap 
– Add, Remove, Link
– Set value, type and range



Rule Editor

• Displays operator rules
• Full text editing
• Partially filled in 

templates using operator 
information

• Syntax and semantic 
checks

• Tab-Completion like 
facility

• Syntax highlighting



New Features Since Last Year

• Added a Tab-Completion like facility
• Added Syntax Highlighting
• Moved to J.R.E. 1.3 (it gives much better 

performance)
• Copying and Pasting multiple selections in 

the DataMap



Visual Soar: Future Plans (this 
year)

• More powerful text-editing facilities (more 
emacs or vim like or calling third-party 
editors to do editing see John Hawkins)

• A way of building sophisticated types out of 
simpler ones



Visual Soar: Future Plans (last 
year)

• More Comprehensive Static Analysis of Rules (being 
worked on actively by Sergej)

• Tab-completion like facility (added)
• Some Integration with the TSI, source rules from Visual 

Soar directly, DataMap vs. Working Memory 
Comparisons, Sending commands to Visual Soar through 
the TSI to open rule editors (hasn’t been worked on but 
some support is expected)

• More Flexible Operator Layout (transition from tree to 
directed graph) (not as useful as initially thought)



Nuggets And Coal

• Nuggets
– Static-type checking 

catches many errors 
beforehand

– Frees users from many 
banal tasks

– Cuts down on a lot of 
task switching 
overhead

• Coal
– DataMap entry can be 

a clumsy process (I 
think the type building 
facility could help a 
lot)

– Putting old agents into 
Visual Soar can be 
cumbersome (there 
doesn’t seem to be 
around this)


