
Soar 2001 1

LG-Soar: Parsing for
information

Deryle Lonsdale, Merrill Hutchison,
Tim Richards, William Taysom

(The BYU NL-Soar Research Group)

Soar 2001 2

The challenge
! Mine content from problematic text
! Address complicated linguistic issues
! Output information into a usable format
! Integrate components within an agent

architecture

Soar 2001 3

Sample from Savage’s text

ABERNETHY, WILLIAM, Wallingford, m. 1673 or 4, Sarah, d. of William
Doolittle, had William, and Samuel, and d. 1718, when his two s.
admin. on his est. Early this name was writ. Ebenetha, or Abbenatha,
acc. Hinman; but in mod. days the descend. use the spell. here giv.

ABINGTON, WILLIAM, Maine, 1642. Coffin.
ABORNE. See Eborne.
ACRERLY, ACCORLEY, or ACRELY, HENRY, New Haven 1640, Stamford

1641 to 53, Greenwich 1656, d. at S. 17 June 1668, wh. is the
date of his will. His wid. Ann, was 75 yrs. old in 1662. Haz. II. 246.
ROBERT, Brookhaven, L. I. 1655, adm. freem. of Conn. jurisdict. 1664.
See Trumbull, Col. Rec. I. 341,428. SAMUEL, Brookhaven, 1655, perhaps
br. of the preced.

Soar 2001 4

LG-Soar
! Integration of three major components

! Regular-expression-based text preprocessing
! The Link Grammar parser (Sleator & Temperley)
! The Soar architecture

! Robust, versatile text processing engine
useful for difficult-to-handle input

! Why a new Soar-based parser? NL-Soar is:
! Designed for cognitive modeling of natural

language use
! Not (yet) versatile enough to handle

grammatically problematic text

Soar 2001 5

The system

Soar
LgParser DRT

Raw data

Preprocessed
data

GEDCOM

DRS’s

Soar 2001 6

Initial stage: preprocessing
! Goals:

! Regularize, standardize nonstandard input text
! Explicitize predictable implicit relationships
! Locate, reformat individual entries
! Replace abbreviations (ambiguous and not)

! Reason: facilitate subsequent linguistic
processing

! Method: comprehensive set of subroutines
and regular expressions coded in Perl

! Result: cleaned-up input text

Soar 2001 7

Example preprocessing
! Input

! Output

HAVERHILL, THOMAS, m. at Andover 6 Jan. 1659, Unice Singletary
of Salisbury. Was freem. 1666. Was k. by the Ind. 15 Mar. 1698.

Thomas Haverhill, married at Andover 6 January 1659,
Unice Singletary of Salisbury.**

Was freeman 1666.**

Was killed by the Indians 15 March 1698.**

Soar 2001 8

Why Soar?
! Flexible multipurpose platform

! Goal-directed problem solving
! Agent-based architecture: web search
! Already used successfully in other applications

! Used in other difficult parsing tasks
! NL-Soar for modeling language use in humans
! Representing and tracking referents in disourse

! Potential for further application
! Machine learning

Soar 2001 9

LG-Soar input/output
! Input: fairly clean (if not completely

grammatical) textual input
! i.e. Preprocessed text as described

previously
! Output: some representation of

structure that will allow for the next
stage of processing
! Traditional linguistic structures are often

cumbersome

Soar 2001 10

Why the LG parser?
! Freely available for research purposes
! Robust
! Simple, explicit relations for next stage

of processing
! Fast
! Written in C
! More appropriate for the task than

traditional phrase-structure grammars

Soar 2001 11

Integration of Soar/LG engines
! Soar and LG engine both use C at the lowest

levels
! Tcl is used for higher-level funtions
! Tcl acts as “glue” between Link Grammar

engine and Soar engine
! RESULT: LG-Soar, including Tcl commands

that call Link Grammar functions and pass
information into the basic Soar processor

Soar 2001 12

Exploring Link Grammar
! What is a link?

! Two parts, + and –
! Shows a relationship between pairs of words

! Subject + verb
! Verb + object
! Preposition + object
! Adjective + adverbial modifier
! Auxiliary + main verb

! Labels each relationship
! Potential links are specified by technical rules
! Possible to score linkages, penalize links

Soar 2001 13

Sample link parse

He was killed by the Indians 15 March 1698.

+-----------------Xc----------------+

+------------MVp-----------+ |

| +----Jp---+ | |

+-Ss+---Pv--+-MVp-+ +--Dmc-+ +-TM+--TY-+ |

| | | | | | | | | |

he was.v killed.v by the Indians.n 15 March 1698 .

Soar 2001 14

Sample LG rule entries
words/words.y: % year numbers
NN+ or NIa- or AN+ or MV- or ((Xd- & TY- & Xc+) or TY-)
or ({EN- or NIc-} & (ND+ or OD- or ({{@L+} & DD-} &
([[Dmcn+]] or ((<noun-sub-xnoappositive> or TA-) & (JT- or IN-
or <noun-main-xnoyear>))))));

<vc-fill>: ((K+ & {[[@MV+]]} & O*n+) or ({O+ or B-} & {K+}) or
[[@MV+ & {Xc+} & O*n+]]) & {Xc+} & {@MV+};

Soar 2001 15

LG parser’s robustness

Mary married I think, 23 November 1661, Samuel Gay.

No complete linkages found.

+-------------------------Xc------------------------+

+-----------------------Osn----------------------+ |

+------------------Xc------------------+ | |

+-------------MVp------------+ | | |

+--Ss--+ +--TM-+--TY--+ | +--G-+ |

| | | | | | | | |

Mary married.v [I] [think] [,] 23 November 1661 , Samuel Gay .

Soar 2001 16

Enhancing the grammar
! Order w/in dates (e.g. May 24 or 24 May)
! Expand range recognizable years
! Allow year postmodifiers (e.g. died May 1655)
! Allow comma-separated verbal arguments

(e.g. married 6 May 1694, Ann Lynde)
! Penalize months, years as appositives

(e.g. died of smallpox, 24 October 1678)
! Allow telegraphy (e.g. He was son of Joe.)
! Add lexicon entries (e.g. freeman)

Soar 2001 17

LG example parses
+-------------------------------Xc------------------------------+
+---------------------Osn--------------------+ |

+----------Ss---------+---------------Xc--------------+ | |
+----MX---+ +---------MVp---------+ | | |

+--G--+ +--Xd-+--Xc-+ +--MVp-+-Js-+ +-TM-+--TY--+ | +----G---+--MG--+--JG-+ |

| | | | | | | | | | | | | | | | |
Thomas Smith , Haverhill , married.v at Andover 6 January 1659 , Unice Singletary of Salisbury .

+--------------Xp-------------+

| +-------MV------+ |

+--Wd--+-Ss+--Ost--+ | |

| | | | | |

LEFT-WALL he was.v freeman.n 1666 .

+-----------------Xc----------------+

+------------MVp-----------+ |

| +----Jp---+ | |

+-Ss+---Pv--+-MVp-+ +--Dmc-+ +-TM+--TY-+ |

| | | | | | | | | |

he was.v killed.v by the Indians.n 15 March 1698 .

Soar 2001 18

What DRT?
! Discourse Representation Theory
! A particular way of dealing with semantics

and logic in natural language
! Goals:

! To represent utterances in a way that emphasizes
their logical structure

! To allow language processing of phenomena that
depend on logical structure.

! Data types: Discourse representation
structures (DRS’s)

Soar 2001 19

What makes up a DRS?
! Discourse referents:

! Variables, representing objects; anything which
can serve as the antecedent for an anaphor

! Conditions:
! Represent properties and relationships

! Examples:
Thomas(u)
v married w

! Processing: links " protoDRS " DRS

Soar 2001 20

Associating information
! Individuals: i1, i2

Name: Thomas Smith
Lived: Haverhill
Married: i2
-where? Andover
-when? 6 January 1659
Died: 15 March 1698

Name: Unice Singletary
Lived: Salisbury

i1 i2

Soar 2001 21

Proto-DRS

Thomas Smith, Haverhill, married at Andover 6 January 1659,

u v w x m n o

Unice Singletary of Salisbury.

y z a

Unice(y), Singletary(z), prep(“at”, x), verbal(“married”, v, x)

propername=uv
modifier=“Haverhill”

Thomas(u), Smith(v), Haverhill(w), Andover(x), 6(m), January(n),

propername=yz

time(day m, month n), 1659(o), time(month n, year o), Salisbury(a),

modifier=“January”
modifier=“Andover”

Soar 2001 22

Corresponding DRS
u, v, w, x, y, z, a, b, c, d, e

of=a

b was c, d=v, Indians(e), d was killed

Thomas(u), Smith(v), Haverhill(w), v~w,

Andover(x), Unice(y), Singletary(z),

Salisbury(a), v married z, b=v, freeman(c),
at x

month=January
day=6

year=1659

by e

month=March
day=15

year=1698

propername=yz

propername=uv

Soar 2001 23

The output
! Predicate-argument relationships
! Discourse representation structures

! CLIG grapher output

! GEDCOM files

Soar 2001 24

Future work and applications
! More DRT implementation
! Other types of unstructured data
! Other languages
! Semistructured text
! Integration with lexical resources (e.g.

WordNet, onomastica)
! Machine learning

