Ebonsoar:
Toward a Simulated Human
Opponent

Tim Hoffman

21st Soar Workshop
May 6, 2001



Introduction

e EBONSOAR: Investigations into an
alternative game playing
framework (FORR).

e Generalize FORR to a broader class of
games.

e Compare FORR to the Top-down approach
to agent design.



FORR

e A plausible model of human game
playing [Epstein 1994].
— avoids deep search.

— combines simple heuristics.

e Employs a system of heuristics called
aavisors.

— Each advisor represents a specific heuristic.

— Advisors are separated into levels of order
and authority, called ters.



Advisor Tiers

e Tier 1
— Authoritative advisors.
— Polled in a specific order.

— A recommended action is performed
Immediately.

— No further deliberation i1s done.



Advisor Tiers (cont'd)

e Tier 1.5
— Considered only if Tier 1 makes no decision.
— Authoritative advisors.
— Polled in a specific order.

— Advisors perform weak search to arrive at
recommendations.

— Recommended action performed
Immediately.

— No further deliberation i1s done.



Advisor Tiers (cont'd)

e Tier 2

— Considered only if Tier 1.5 makes no
decision.

— Non-authoritative advisors.

— Advisors recommend an action with a degree
of confidence.

— A voting scheme decides which action is
recommended by the most advisors.



Extending FORR

e FORR was developed for discrete,
perfect-information, turn-based games.

e Question: iIs FORR extensible to real-
time, continuous, interactive games?

— convert continuous variables to ‘buckets’ of
values.

— shallow searches involving partitioned
continuous variables may quickly become
Intractable.



The Subtleties of Time

e \When time is partitioned, different
advisors can recommend actions In
different time frames.

e Actions may require a certain amount of
time to complete themselves.

— A lower tier advisor could override a higher
tier's action while being performed.

— When time Is partitioned, different advisors
can recommend actions in different time
frames.

e Requires Persistent Justifications.



Persistent Justifications

e Store the preconditions for an action when an
advisor recommends It:

— Action name
— Advisor rank
— Conditions 1,2, ... n that justify the action

e Persistent Justifications remain in working memory
until one or more conditions become false.

e \When an advisor recommends an action, it must
check to see If a justification exists for that action.

— If the justification contains an advisor whose rank is equal to or greater
than than the advisor recommending the action, then no action is taken.



Implementation

Created EBONSOAR, an Asteroids-type arcade
game, as a testing environment.

Interfaced EBONSOAR and Soar with SGIO.
Designed a FORR framework in Soar.

Developed a set of basic heuristics to serve as
advisors.



FORR in Soar

/

/ | MPASSE

oper at or Jemmu

pr oposal s
I|
1
\

/
/
1
|

A/ oper at or proposal s
\ l‘\l \\\\
| MPASSE :

\
Ay

T~ \\\

Repesat
Wait

Dodge
Align-BH

Chase-ship

v

Cornered Shoot-DS

Flee Trap-corner

No-suicide

Trap-corner

Closest-

object

Repeat



EBONSOAR Architecture

EBONSOAR

SGIO

GAME STATE

LR I—
| <=

AGENT ACTIONS

INPUT /
OUTPUT
LINKS




Top-down hierarchy

ATTACK WANDER

o |



FORR vs. Top-down
e FORR exhibited thrashing.

— Differing, alternating majorities in Tier 2.
— Weighting the votes of advisors can help.

— Developer must provide sufficiently many
Tier 2 advisors for voting.

e Advisors in FORR are “plug & play”.

e Top-down ran smoothly (no thrashing.)

e Top-down Is potentially more complex if
the number of subgoals becomes large.



Nuggets & Coal

e Nuggets:

— FORR can be extended to more complex domains.
— Advisors easily added to and removed from the framework.

— Side effect: SoarAgent class can be reused.

e Coal:

— Thrashing.

— Careful tweaking of Tier 2 voting weights required to avoid unrealistic
behavior.

— Learning component in FORR not addressed yet



