Toward a Simulated Human Opponent

Tim Hoffman
21st Soar Workshop
May 6, 2001

Introduction

- EBONSOAR: investigations into an alternative game playing framework (FORR).
- Generalize FORR to a broader class of games.
- Compare FORR to the Top-down approach to agent design.

FORR

- A plausible model of human game playing [Epstein 1994].
 - avoids deep search.
 - combines simple heuristics.
- Employs a system of heuristics called advisors.
 - Each advisor represents a specific heuristic.
 - Advisors are separated into levels of order and authority, called *tiers*.

Advisor Tiers

- Tier 1
 - Authoritative advisors.
 - Polled in a specific order.
 - A recommended action is performed immediately.
 - No further deliberation is done.

Advisor Tiers (cont'd)

- Tier 1.5
 - Considered only if Tier 1 makes no decision.
 - Authoritative advisors.
 - Polled in a specific order.
 - Advisors perform weak search to arrive at recommendations.
 - Recommended action performed immediately.
 - No further deliberation is done.

Advisor Tiers (cont'd)

- Tier 2
 - Considered only if Tier 1.5 makes no decision.
 - Non-authoritative advisors.
 - Advisors recommend an action with a degree of confidence.
 - A voting scheme decides which action is recommended by the most advisors.

Extending FORR

- FORR was developed for discrete, perfect-information, turn-based games.
- Question: is FORR extensible to realtime, continuous, interactive games?
 - convert continuous variables to 'buckets' of values.
 - shallow searches involving partitioned continuous variables may quickly become intractable.

The Subtleties of Time

- When time is partitioned, different advisors can recommend actions in different time frames.
- Actions may require a certain amount of time to complete themselves.
 - A lower tier advisor could override a higher tier's action while being performed.
 - When time is partitioned, different advisors can recommend actions in different time frames.
- Requires Persistent Justifications.

Persistent Justifications

- Store the preconditions for an action when an advisor recommends it:
 - Action name
 - Advisor rank
 - Conditions 1,2, ... n that justify the action
- Persistent Justifications remain in working memory until one or more conditions become false.
- When an advisor recommends an action, it must check to see if a justification exists for that action.
 - If the justification contains an advisor whose rank is equal to or greater than than the advisor recommending the action, then no action is taken.

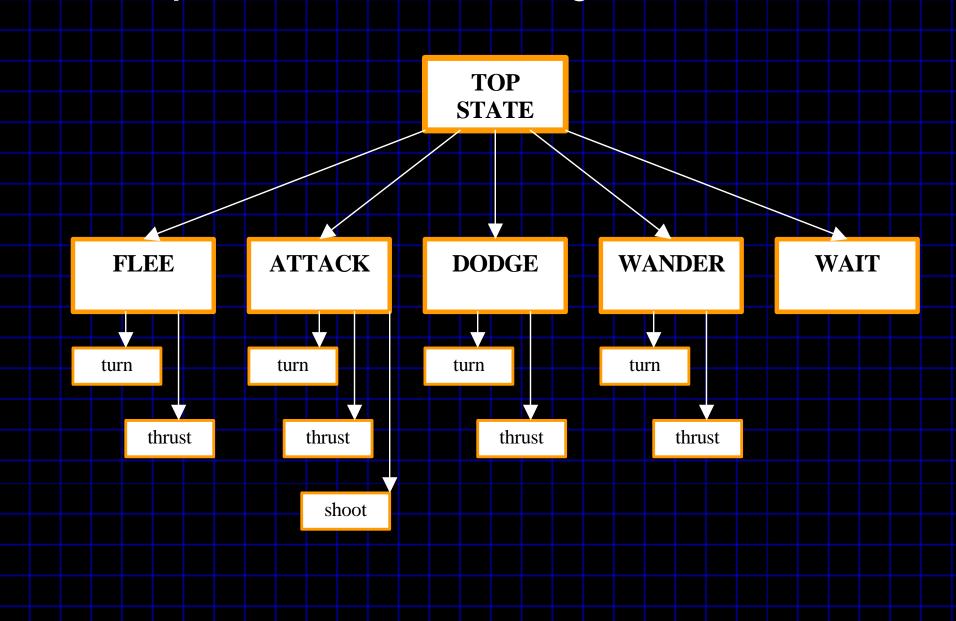
Implementation

- Created EBONSOAR, an Asteroids-type arcade game, as a testing environment.
- Interfaced EBONSOAR and Soar with SGIO.
- Designed a FORR framework in Soar.
- Developed a set of basic heuristics to serve as advisors.

FORR in Soar **TOP** operator **STATE** proposals IMPASSE operator proposals TIER 1 IMPASSE **TIER** 1.5 IMPASSE thrust shoot turn Shoot-DS Flee Cornered TIER 2 Flee Trap-Trap-corner corner No-suicide thrust shoot turn Trap-corner Dodge Dodge Repeat Align-BH Align-BH Wait Chase-Chase-ship ship Closest-Closestobject object Repeat Repeat Wait Wait

EBONSOAR Architecture

GAME STATE
SoarAgent
C++
AGENT ACTIONS
INPUT / OUTPUT
LINKS


Advisors in Soar

AGENT ACTIONS

GAME STATE

Top-down hierarchy

FORR vs. Top-down

- FORR exhibited thrashing.
 - Differing, alternating majorities in Tier 2.
 - Weighting the votes of advisors can help.
 - Developer must provide sufficiently many
 Tier 2 advisors for voting.
- Advisors in FORR are "plug & play".
- Top-down ran smoothly (no thrashing.)
- Top-down is potentially more complex if the number of subgoals becomes large.

Nuggets & Coal

Nuggets:

- FORR can be extended to more complex domains.
- Advisors easily added to and removed from the framework.
- Side effect: SoarAgent class can be reused.

Coal:

- Thrashing.
- Careful tweaking of Tier 2 voting weights required to avoid unrealistic behavior.
- Learning component in FORR not addressed yet