
KnoMic: A Knowledge Mimic

Michael van Lent
University of Michigan



Soar Workshop XXI May 4-5, 2001

KnoMic motivation
• Task performance agents are becoming common

• Training exercises
• Military simulations
• Computer games

• Task performance agents require lots of knowledge
• TacAir-Soar: 8000+ Soar productions
• Quake II agent: 800+ Soar productions

• Knowledge acquisition for these agents is expensive
• 15 person/years for TacAir-Soar

• Machine learning should be able to learn this 
knowledge automatically



Soar Workshop XXI May 4-5, 2001

KnoMic review

Expert ModSAFEnvironmental
Interface

Observation
Generation

Specific to
General Induction

Operator
Classification

Production
Generation

Soar
Architecture

Parameters &
Sensors

Output
Commands

Annotations

Observation Traces

Operator
Conditions

Learned
Knowledge

Soar
Productions



Soar Workshop XXI May 4-5, 2001

What’s new with KnoMic 
• Re-implementing in Java
• Using a more natural observation trace format
• Adding structured sensors



Soar Workshop XXI May 4-5, 2001

Re-implementing in Java
• Why rewrite?

• I’d feel important if other people used my system
• No one’s going to use it in its current form

• 40 pages of ugly, undocumented Tcl code

• Why Java?
• Might as well rewrite it in a “real” programming language
• Speed isn’t a major issue
• Leverage some of the VisualSoar Java code
• I didn’t know Java

• How’s it going
• Slowly; but not because of Java



Soar Workshop XXI May 4-5, 2001

New observation trace format
• Old way of generating observation traces

• Add a production for each sensor and output command
• Tcl right-hand side function to write each to a file
• Production to write operator changes to a file

• New way of generating observation traces
• Two Soar commands “watch –wmes on” and “log filename”
• Callback Tcl command to indicate end of decision cycle
• Detect operator changes in Soar trace
• Captures internal wme changes (as well as external)
• Tested on Towers of Hanoi, Eaters, TankSoar, and Quake II



Soar Workshop XXI May 4-5, 2001

Adding structured sensors
• Previously KnoMic sensors were independent

• io.input-link.radar.blip.altitude 5000
• io.input-link.radar.blip.speed 240

• Doesn’t allow parallel attributes (multi-attributes)
• Doesn’t capture all the information on the input-link

• Now KnoMic sensors can be related
• Tree structure of sensors

• io.input-link.radar.blip
– altitude 5000
– speed 240

• Easy to do with new observation trace and VisualSoar code
• Multi-attributes cause some problems with generalization



Soar Workshop XXI May 4-5, 2001

Generalizing with structured sensors
First instance io.input-link.radar

blip

altitude = 5000

speed = 241

heading = 42

blip

altitude = 4950

speed =240

heading = 43

io.input-link.radar

blip

altitude = 5050

speed = 240

heading = 42

blip

altitude = 5000

speed =242

heading = 43

Second instance



Soar Workshop XXI May 4-5, 2001

Potential Solutions
• Most specific matching

• If identifying wmes exist use them
• If not then match the sub-trees with the greatest number of 

equivalent wmes
• If necessary apply recursively to sub-sub-trees

• Problems
• Doesn’t guarantee a correct pairing
• How to resolve ties
• Requires lots of time to compute

• Need to count matches for each pair of sub-trees

• Need to see how it works in a few domains



Soar Workshop XXI May 4-5, 2001

Potential Solutions
• Require unique attributes

• Allow multi-attributes but require unique attributes also

• Doesn’t really address the problem
• In hard cases learning will just ignore the multi-attributes

io.input-link.radar

blip

altitude = 5050

speed = 240

heading = 42

blip

altitude = 5000

speed =242

heading = 43

lead wing



Soar Workshop XXI May 4-5, 2001

Potential Solutions
• Require unique identifiers

• Each multi-attribute has a “name” with a unique value

• Equivalent to the previous solution
• Easy to write a production which creates unique attribute 

from the name

io.input-link.radar

blip

altitude = 5050

speed = 240

heading = 42

blip

altitude = 5000

speed =242

heading = 43

name = lead name = wing



Soar Workshop XXI May 4-5, 2001

Next steps
• Finish Java implementation
• Run some experiments with Quakebot

• Explore different solutions to the matching problem

• Replace current learning algorithm with C4.5
• How does C4.5 handle the matching problem?

• Rerun Quakebot experiments
• Modify Quakebot to allow observations of humans
• Work on learning from noisy observation traces



Soar Workshop XXI May 4-5, 2001

Nuggets and Coal
• Nuggets

• Successfully defended Ph.D
• Research is continuing

• Interesting problems
• Clear what the next steps should be

• Related research efforts (Tolga, Scott) are kicking off

• Coal
• Java rewrite is proceeding slowly
• Reviewers want to see experiments with noisy traces
• Future work slide from last year still mostly applicable


