
Agents in Soar and UM-PRS

Sayan Bhattacharyya
University of Michigan

Object: Exploration of the design space of plan
execution architectures

Architectures: Soar, UM-PRS, RAPS,...

Plan execution architectures

Agents: Agents execute plans in dynamic environments in
which exogenous events may occur.

Parameter of interest: Sensitivity of plan execution
to the conditions of execution

Approach to this work: Experimental/empirical
with agents built using existing architectures
(as opposed to theoretical)

Salient features of UM-PRS
1) Programmer -initiated i/o:

“i/o not architectural”
more than/less than one update per cycle possible

2) Arbitrarily large grain size:
knowledge areas permit procedural code
(loops, conditionals, function calls…)

3) No distinction between i-support and o-support
(everything is equally persistent)

Task and environemnt selection

1. Use same representation for i/o interface consistently.
(use Soar’s input link repesentation)

2. Use hierarchical tasks
3. Use a world which keeps changing fast.

Testbed: Enhanced version of eaters, to support the above.

How architectural differences lead to
functional differences

Architectural
differences

Functional
differences

persistence issues

i/o issues

grain size issues

sensitivity to
conditions of
execution

How architectural differences lead to
functional differences (contd)

UM-PRS Soar

food
sighted

food
disappears

Build data
structure
(persistent)

elaborate

i-support no
longer available

distracted

The agents

S -- a “typical” Soar agent
SU -- a “UM-PRS-like” Soar agent
U -- a “typical” UM-PRS agent
US -- a “Soar-like” UM-PRS agent

SU -- avoids i-supported elaborations in favor of
o-supported data structures
programming trade-off: much more complex

search control
US -- frequent polling of input to mimic sensitivity

of Soar to input changes
programming trade-off: slowed down in

redundant polling

The experiments tell us...

Experiments varying board size, for U,S,SU, US
for a “vertical” task hierarchy and “branchy”
task hierarchy.

Observations:
1) “Vertical” hierarchy is more well-behaved
2) SU and US data are less regular than S and

U data
3) Is sensitivity of plan execution to conditions

of execution a curse or a blessing?
Answer: It depends.

Will there be a transition point ?

Relation to RAPs

Sensory input part of task methods (like UM-PRS)
But, can support unsolicited sensory information

(like Soar)

Unique names assigned to objects, as long as in sensor
range (somewhat like i-support in Soar).

Tasks selected by a RAP can have arbitrarily large
grain size (like UM-PRS)

Predictions about RAPs can be made.

Nuggets and coal

Nuggets: Possibly of wider interest than just to
Soar and to UM-PRS

Execution is increasingly important as
AI gets fielded more in the real world.

Coal Results may be biased by programmer’s
knowledge and competence levels.

