Soar Lint: Static Testing for Soar

Sergej Roytman University of Michigan Al Lab

xxi Soar Workshop

The Datamap

Issues

- WME Consistency
 - Assume Datamap correct; can structure implied by productions be found in Datamap?
 - Assume productions correct; does implied structure cover everything in the Datamap?
- Operator Coverage
 - Is there an operator proposed at every point in the WM-state space?
 - Is there more then one operator proposed for some points?

WME Coverage

- First, test if all structure implied (generated or tested) by productions has corresponding structure in Datamap
- Then, compare structure generated to structure tested

WME Coverage

Gene	rated? 1	0
Tested? 1	OK	A production will never fire, because it tests something which is never generated
0	Structure is added uselessly, since it is never tested	DM thinks this structure should be here, but the productions have other opinions

Operator Tests

The Fundamental Question:

Are there regions of the WME-state space in which too many or too few operators will get proposed?

Operator Tests

- Find operator proposal rules in productions
 mention an ^operator in RHS but not LHS
- Find their state-names
 - state-vertex is part of output of V-S parser; if it has a ^name augmentation, that's it, otherwise it's an all-production
- Gather productions by problem–space (all–productions separately)
- Run tests

Testing an Operator

(state <s> ^io.input-link <il>)
(<il> ^foo.bar baz)
(<il> ^x.y.z 42)

Only these two values are relevant!

Testing an Operator

(state <s> ^io.input-link <il>)
(<il> ^foo.bar baz)
(<il> ^x.y.z 42)

(node 256 == baz) && (node 17 == 42)

Operator Testing Analyzed

For op-props $\{x_i\}$, no operator will be proposed if:

$$\neg(\lor_{i} \{x_{i}\}) == \land_{i}(\neg \{x_{i}\})$$

Since each x_i is itself a conjunction, this is just the same thing as SAT

As long as there is not more than one negated condition in an x_i , it is also an instance of HORN–SAT

Soar Lint in the Real World

- WME Coverage
 - input-link and output-link had to be made special cases
 - negated conditions remain problematic
- Operator Coverage
 - it has proven useful to group operators by problem-space
 - necessary to find ways to reduce all possible LHS conditions to Horn form (!)
 - necessary to handle cases when two variables must have some relationship to each other, but actual values are never mentioned
 - existence tests must be fit into framework

Current Status

- WME tests just about ready for prime-time.
- Operator tests not as close, but since HORN–SAT has polynomial complexity in the number of variables, pursuing this thing seems likely to give good results.