
Building a UTC from the brain up

Thad Polk
Department of Psychology

University of Michigan

Collaborators

Chuck Behensky

Eric Freedman

Rich Gonzalez

Matthew Jones

Rick Lewis

Pat Simen

Ed Smith

Scott Wallace

Brahm Windeler

UTCs: The Soar Approach

Soar’s development driven by functional constraints
• Partly reflects its history as an AI system
• But also responds to flexibility of human behavior:

If there is any property that a theory of cognition must explain it is how
intelligence is actually possible. Necessary characteristics are well and good,
but they are substantial ly less than half the story. Sufficiency is all-important.
Intelligence itself is a sufficiency of capabili ty. To be intell igent is to be able to
do certain things… Unless the theory can actual ly demonstrate these
capabili ties, it cannot claim that is has explained intell igence.

(Newell, 1990)

UTCs: The Soar Approach

Can view basic assumptions as providing functionality:
• Symbol systems: Universal computation

• Productions: Flexible, rather than fixed, control
• Problem space search: Handling uncertain problems

• Subgoaling: Handling lack of knowledge

• …

Essentially a top-down approach to UTC development
• TOP: Functionality/behavior you need to explain

• Work DOWN to a theory that provides that functionality

• Use that theory to explain cognitive phenomena

Building UTCs from the brain up

Bottom-up approach is complementary:
• BOTTOM: basic facts about neural computation

• Work UP to UTC by abstracting out critical principles

• Use those principles to explain cognitive phenomena

Connectionist modeling often has this goal
• But models make very different assumptions

• Don’t use a common architecture

Overview

Goal: Derive architecture from facts about neural
computation and apply it to cognitive phenomena

Plan:
• Simple assumptions about neural computation

• Emergent computational properties of the assumptions

• Relevance to cognition:
– Working memory

– Mental representation

– Higher cognition & control

Neural Computation: Assumptions

1. Neural processing is recurrent, not feed-forward

Neural Computation: Assumptions

2. Neural representations are distributed across a
population of neurons, not localized to single cells

Grandmother

Neural Computation: Assumptions

3. Neural learning is correlation-based

Hebbian learning: “Neurons that fire together,

 wire together”

Overview

Goal: Derive architecture from facts about neural
computation and apply it to cognitive phenomena

Plan:
• Simple assumptions about neural computation

• Emergent computational properties of the assumptions

• Relevance to cognition:
– Working memory

– Mental representation

– Higher cognition & control

Recurrent Connectivity Distributed Representation

1

-1

-1-1

-1

-1

11

1

Correlation-based Learning

1

-1

-1-1

-1

-1

11

1
-1

-1-1

-1

+1

+1

+1
-1

-1

Emergent Properties:
Completes Partial Patterns

1

-1-1

-1

-1

11

1
-1

-1-1

-1

+1

+1

+1
-1

-1

?

Emergent Properties:
Completes Partial Patterns

1

-1-1

-1

-1

11

1
-1

-1-1

-1

+1

+1

+1
-1

-1-1 ✔

Emergent Properties:
Cleans Up Noisy Patterns

1

-1-1

-1

-1

11

1
-1

-1-1

-1

+1

+1

+1
-1

-1

X

Emergent Properties:
Cleans Up Noisy Patterns

1

-1-1

-1

-1

11

1
-1

-1-1

-1

+1

+1

+1
-1

-1-1 ✔

Emergent Properties:
Associative Memory

Attractors & Basins of Attraction
(Hopfield, 1982; 1984)

Activation of unit 1

A
ct

iv
at

io
n

of
 u

ni
t 2

Emergent Properties:
Maintenance/Decay

Time

Activity is maintained after input is
removed, but may decay over time

Input

Input

Input

Input

Emergent Properties:
Similarity-Based Interference

Similar attractors are close to each other
So noisy input can converge on wrong attractor

Similar patterns overlap each other
 So Hebbian learning partially associates
 cues with incorrect items that are
 similar to target

The Attraction of Attractors
Any network that satisfies these assumptions

(recurrence, distributed repr, Hebbian learning) will
behave like an attractor net
• Associative memory, reverberatory maintenance, time-

based decay, similarity-based interference…

Most of neocortex satisfies these assumptions

So most of neocortex should behave like attractor nets
• Properties should explain many cognitive phenomena

• Beginning of a UTC built from the brain up

Overview

Goal: Derive architecture from facts about neural
computation and apply it to cognitive phenomena

Plan:
• Simple assumptions about neural computation

• Emergent computational properties of the assumptions

• Relevance to cognition:
– Working memory

– Mental representation

– Higher cognition & control

Basic Questions about WM

How is information maintained after input is removed?

Why does information decay over time?

How does new information interfere with older
information?

Attractor-based Answers

How is information maintained after input is removed?
• Reverberatory activity

Why does information decay over time?
• Reverberatory activity insufficient to maintain itself forever

How does new information interfere with older
information?
• Fall into nearby, but wrong, attractor basin

• Because patterns overlap, partially associate cues with both

Simulations

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5

Serial Position

Short/No-Supp
Long/No-Supp
Short/Supp
Long/Supp

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5

Serial Position

Short/No-Supp
Long/No-Supp
Short/Supp
Long/Supp

Baddeley et al. (1984)

Simulation

Simulations

0

10

20

30

40

50

60

1 2 3 4 5 6

Serial Position

Odd
Even

0

10

20

30

40

50

60

1 2 3 4 5 6

Serial Position

Odd
Even

Baddeley et al. (1968)

Simulation

Overview

Goal: Derive architecture from facts about neural
computation and apply it to cognitive phenomena

Plan:
• Simple assumptions about neural computation

• Emergent computational properties of the assumptions

• Relevance to cognition:
– Working memory

– Mental representation

– Higher cognition & control

Knowledge Representation

How do we represent concepts and their relationships?

One view: Similar concepts have similar
representations, dissimilar concepts have dissimilar
• E.g., Similar concepts are “nearby” in semantic space

• E.g., Similar concepts use overlapping distributed codes

Problem: Similarity judgments are asymmetric
• People judge North Korea to be more similar to China, than

China is to North Korea

• More generally, non-protoypical concepts judged more
similar to prototypical concepts than vice versa. Why?

Attractor-Based Explanation of
Similarity Asymmetries

Prototypical concepts have stronger (more stable)
attractors than do non-prototypical concepts

Easier to compare a weaker attractor to a stronger
attractor (downhill) than vice versa (uphill):

Hi Energy,
Lo Stability

Lo Energy,
Hi Stability

Strong attractor

Weak attractor

Prediction

Exposure frequency (among other factors) increases
attractor strength (via Hebbian learning)

Might therefore be able to manipulate similarity
asymmetry by presenting stimuli with different
frequency
• Should even work with simple perceptual stimuli (color

patches) rather than complex concepts (countries,
animals…) which are harder to control

Experiment: Materials

Blue Patches

Green Patches

Experiment: Pre-test

How similar is to ? (0: very dissimilar, 9: very similar)

How similar is to ? (0: very dissimilar, 9: very similar)

How similar is to ? (0: very dissimilar, 9: very similar)

How similar is to ? (0: very dissimilar, 9: very similar)

.

.

.

.

.

.

(All pairings in both directions)

To establish baseline ratings/asymmetries for each participant:

Experiment: Training

Which is bigger?

Which is bigger?

1/2 subjects saw
these hues most

1/2 subjects saw
these hues most

Experiment: Post-test

How similar is to ? (0: very dissimilar, 9: very similar)

How similar is to ? (0: very dissimilar, 9: very similar)

How similar is to ? (0: very dissimilar, 9: very similar)

How similar is to ? (0: very dissimilar, 9: very similar)

.

.

.

.

.

.
Prediction: Relative to the pre-test, patches that were low freq will be
rated more similar to patches that were high freq than vice versa

To compare against pre-test baseline for each participant:

Results

4.2

4.3

4.4

4.5

4.6

4.7

Pre-test Post-test

Hi-Lo
Lo-Hi

Overview

Goal: Derive architecture from facts about neural
computation and apply it to cognitive phenomena

Plan:
• Simple assumptions about neural computation

• Emergent computational properties of the assumptions

• Relevance to cognition:
– Working memory

– Mental representation

– Higher cognition & control

Higher Cognition

Models of higher cognition (planning, problem solving)
typically based on symbolic processing
• Symbols, productions, sequential behavior, search…

Most neural net models have little to say

Do attractor nets have anything to contribute?

Mapping Productions Onto Attractors

Attributes = attractor nets/layers

Values = attractor patterns in the specified layer

Productions = associations/connections between layers

IF
 Letter T
THEN
 Number 7

IF
 Letter L
THEN
 Number 1

Letter Number

Green Production

Red Production

Mapping Productions Onto Attractors

Attributes = attractor nets/layers

Values = attractor patterns in the specified layer

Productions = associations/connections between layers

We’ve actually implemented this mapping in Lisp:

Input: Simplified production rules

Output: Matlab code that implements a set of attractor
nets that behave like the production system (usually)

Can thus use the same attractor architecture for some
higher cognitive tasks

Issues Raised by the Mapping

A number of features of production systems DON’T
map easily:
• Variables, independence/modularity of different

productions, all-or-none matching, ...

Possible responses:
• Neural nets lack critical functionality for modeling cognition

– Need to work on increasing their functionality

• Production systems have too much functionality
– Might work with less powerful production systems that map more naturally

• Both are probably reasonable

Tower of London example

 A simplified version of Tower of Hanoi

Initial Configuration

Final Configuration

1 2 3

4 5 6

7 8

An Attractor Net for Blind Search

1 2

3

4

5

6

Associati ons/rules
suggesting legal moves

An Attractor Net for Blind Search

1 2

3

4

5

6

Red to 4 Green to 4

Associati ons/rules
suggesting legal moves

Initially, all legal moves get activated...

An Attractor Net for Blind Search

1 2

3

4

5

6

Red to 4 Green to 4

Associati ons/rules
suggesting legal moves

But attractors compete...

An Attractor Net for Blind Search

1 2

3

4

5

6

Red to 4 Green to 4

Associati ons/rules
suggesting legal moves

And one eventually wins.
(A kind of conflict resolution)

Adding Control Knowledge

1 2

3

4

5

6

Associati ons/rules
suggesting legal moves

Additional control knowledge can bias search

Adding Control Knowledge

1 2

3

4

5

6

Red to 4 Green to 4

Associati ons/rules
suggesting legal moves

Initially, all legal moves get activated...

Additional control knowledge can bias search

Control knowledge
pref erring green to 4

Adding Control Knowledge

1 2

3

4

5

6

Red to 4 Green to 4

Associati ons/rules
suggesting legal moves

But control knowledge biases competition...

Additional control knowledge can bias search

Control knowledge
pref erring green to 4

Adding Control Knowledge

1 2

3

4

5

6

Red to 4 Green to 4

Associati ons/rules
suggesting legal moves

And correct one eventually wins.
(A kind of preference scheme)

Additional control knowledge can bias search

Control knowledge
pref erring green to 4

Example

Init Goal

Overview

Goal: Derive architecture from facts about neural
computation and apply it to cognitive phenomena

Plan:
• Simple assumptions about neural computation

• Emergent computational properties of the assumptions

• Relevance to cognition:
– Working memory

– Mental representation

– Higher cognition & control

