General, Maintainable, Extensible Communications for Computer Generated Forces

Robert E. W ray, James C. Beisaw, Randolph M. Jones, Frank V. K oss, Paul E. Nielsen, Glenn E. Taylor

Soar Technology, Inc. 3600 Green Court Suite 600 Ann Arbor, MI 48105 734-327-8000

CGF Communications

- Requirements
 - M odel human communications
 - Provide status and decision rationale
- Our approach
 - Unified & flexible communications infrastructure
- ◆ Benefits
 - Consistency, maintainability, extensibility, customization

Communications in TacAir-Soar

- TacA ir-Soar: A real-time, entity-level simulation of military aircraft
- Challenges presented by former design
 - Utilize different implementations for generating communications
 - Generate multiple messages for same communication event
 - Couple message meaning and syntax
 - Little user customization for communications

Design

- Design elements
 - Unified communications knowledge
 - Language for communicating events
 - M essage transport infrastructure
 - Handlers for specific communications devices
- ◆ Life cycle of a communication event
 - Intention→G eneration→Customization→Transmission

Unified Communication Knowledge

- Consistent and reusable implementation
- Interface between behavior and communication knowledge
- Separation of computationally inexpensive generation of communication and computationally expensive generation of the final message
 - Always suggest an intent to communicate and then decide whether message should be sent
- Context-free message delivery knowledge

Example: Intent to Communicate

Intention → Generation → Customization → Transmission

JF

Goal: request-position-from-partner

Partner-name: ?partner-name

Mission-radio: ?radio

("eagle3")

("radio-a")

THEN CREATE

Communication

Name: where-are-you

Content:

Partner-name: ?partner-name ("eagle3")

Previous-communication:

Radio: ?radio ("radio-a")

From: ?partner-name ("eagle3")

Language for Communication Events

- Catalog of message types
 - Templates define syntax and parameters for each message
- Simple attribute-value content language
- Simple taxonomy of messages
 - Complex utterances

Example: Message Generation Message Template

Intention → Generation → Customization → Transmission

Message-definition: where-are-you

Requires: partner-name

Parameters:

Type: single-value-utterance

Radio call-sign?: yes

Performative: ask-one (KQML) [see next slide]

Content:

Partner-name: ?partner-name

Message Transport Infrastructure

- A gent communication languages
 - KQML, FIPA-ACL
 - Performative: attitude of the speech-act
 - tell, ask, order, reply, did-not-understand,

♦ KQML Message:

Performative: ask-one

Sender: eagle1

Receiver: eagle3

Language: attribute-value description

Ontology: FW A -Operations

Content: (w here-are-you (partner-name eagle3))

Handlers for Specific Communication Devices

- Format message for particular communications device
- Separates device specific knowledge from agent's task knowledge
- Translation can occur outside agent's knowledge base

Example: Registration of Device

Intention \rightarrow G eneration \rightarrow C u stomization \rightarrow Transmission

ÎE

Communication

Previous-communication:

Radio: ?radio

("radio-a")

THEN CREATE

Communication

Device:

Radio: ?radio

Type: radio

("radio-a")

Example: Message Handler Radio

Intention \rightarrow G eneration \rightarrow Customization \rightarrow Transmission

IF.

Definition

Type: single-value-utterance

Name: ?name

call-sign?: yes

Content: ?attribute

Device

Type: Radio

Radio: ?radio

Content:

?attribute ?value

("where-are-you")

("partner-name")

("radio-a")

("partner-name:eagle3")

THEN CUSTOMIZE & TRANSMIT MESSAGE

Device: ?radio ("radio-a")

Utterance: "?my-call-sign ?name ?value"

("eagle1 where-are-you eagle3")

Example: Message Handler

Agent Window

Intention \rightarrow G eneration \rightarrow Customization \rightarrow Transmission

(I)F

Definition

Type: single-value-utterance

Name: ?name

Content: ?attribute

("where-are-you")

("partner-name")

Device

Type: Text

Name: agent-window

Content:

?attribute ?value

("partner-name:eagle3")

THEN CUSTOMIZE & TRANSMIT MESSAGE

Device: agent-window

Utterance: "====== TEXT MESSAGE ========"

" ?my-call-sign: ?name ?value"

Costs

- Performance: Now a two-step process
 - Slight delay between message generation and communication
 - Not perceptible to humans
- M ore know ledge required to manage delay
- No formal evaluation yet

Benefits: Methodology and Infrastructure

- Common methodology
 - Consistent implementation
 - · Easier for developers
 - Offset performance cost
- M aintainable communications infrastructure
 - Lower maintenance costs
 - Separation and encapsulation of communication generation from device messaging
 - Provide supporting resources and tools like the declarative message catalog

Benefits: Extensibility and Customization

- Extensible framework for communication
 - Extend message catalog
 - Intent to communicate in task knowledge
 - M essage handlers for new devices
- U ser customization
 - Lookup tables and graphical tools will enable customization
 - Improvement over previous labor-intensive approach

Conclusions

- Communications requirements for CGFs are broader than just human communications
- Design for these requirements from the beginning
- A nticipate a lot of different communications requirements
- Put in place an infrastructure to handle these requirements

Conclusions

- Take advantage of existing technology: W ork of the agent-based community
 - New work was not around when TacA ir-Soar was designed
- Standardization of communications technology
 - Less expensive to customers

Acknowledgements

◆ This work was partly supported by Joint Forces Command under contract number 672-0-1112-900-050-010 and the Naval W arfare Development Center under contract number SP0700-99-D-0300.

References

- M. Burke. Rapid K nowledge Formation (RKF) Program Description, URL: http://reliant.teknowledge.com/RKF/about/overview.htm. 1999.
- B. Chandrasekaran, J. Josephson, and V. Benjamins. W hat A re Ontologies, and W hy Do We Use Them? IEEE Intelligent Systems, 14, 1, 20-26.1999.
- ◆ P. R. Cohen and H. J. Levesque. Communicative actions for artificial agents. Proceedings of the First International Conference on Multi--A gent Systems. 65-72. MIT Press. 1995.
- Foundation for Intelligent Physical A gents. FIPA Communicative Act Library Specification. Technical Report XC00037H. Aug 2001.
- M. Genesereth. K nowledge interchange format. In James Allen, Richard Fikes, and Erik Sandewall, Eds., Proceedings of the Conference of the Principles of Knowledge Representation and Reasoning. 599-600. Morgan K aufman Publishers. 1991.
- R. M. Jones, J. E. Laird, P. E. Nielsen, K. J. Coulter, P. Kenny and F. V. Koss. A utomated intelligent pilots for combat flight simulation. A I Magazine. Spring, 1999.

References

- Y. Labrou and T. Finin. Semantics and Conversations for an Agent Communication Language. Proceedings of the American Association of Artificial Intelligence. 1997.
- J. E. Laird, A. Newell, and P. S. Rosenbloom. Soar: An Architecture for General Intelligence. A rtificial Intelligence, 47:289-325. 1987.
- ◆ The MITRE Corporation. Command and Control Simulation Interface Language (CCSIL), MITRE Technical Report, Modeling and Simulation Technical Center. Oct1996.
- A. Newell, A. Reasoning, problem solving and decision processes: The problem space as a fundamental category. In N. Nickerson (Ed.), A ttention and Performance VIII (Vol. VIII, pp. 693-718). Lawrence Erlbaum Associates. 1991.
- ◆ P. Nielsen, F. Koss, G. Taylor, R. M. Jones. Communication with intelligent agents. 22nd Interservice Industry Training Systems and Education Conference (I/ITSEC). Nov 2000.
- G. Taylor, R. M. Jones, M. Goldstein, and R. Frederiksen: VISTA: A generic toolkit for visualizing agent behavior. To appear in Proceedings of the 11th Conference on Computer Generated Forces and Behavioral Representation. Orlando, FL. 2002.