
1

Learning Action
M od el s f rom S oar
E x p erience T races

John Hawkins
Soar Research Group
University of Michigan

Action M od el s
� Basic Idea: agents should be able to make

plans about taking actions to achieve goals.

� Problem: Action effects are complicated and
have bizarre corner cases, so they are hard
and time consuming to explicate.

� Solution: We want agents that can learn
about actions from experience to better
understand their environment.

2

Shields in T a nk so a r
� Action: move-left

� Battery: 35

� Radar at full power

� Shields on

� Incoming missile
from behind

� Will the shields hold
out? Why?

Captain! She
can’t take
much more!

W hy is t his ha r d?
� Lots of factors influence how even the

simplest aspects of the environment
(such as the shields) change over time

� Action effects have a temporal aspect
that is hard to observe. (i.e. destroying
the enemy with a missile requires
repetition and happens after a delay.)

3

Inductive Logic
P r ogr a m m ing

� ILP can handle structured, first-order
descriptions of the environment.

� Takes a collection of positive and
negative examples and tries to learn
rules that cover as many examples as
possible without covering more
negative examples than necessary.

B a ck gr ound K now l edge
� The background is

essentially just all the
sensor information
from any state in the
range along with a
record of which actions
were taken

� This information is
pulled directly from a
soar trace and
converted into a first-
order logic
representation.

� shields_now(1, off).

� battery(1, 200).

� radar(1, 0).

� action(1,shields_on).

4

Positive&Negative
E x am p l es

� The state before a
predicate becomes
true (or false) is a
positive (or negative,
respectively) example
for that predicate.

� This information is also
extracted from a soar
trace.

If shields are on at state
2:

� State 1 is a positive
example for
shields_next(on).

� State 1 is a negative
example for
shields_next(off).

L ear n in g
� Learned Clause: shields_next(state, status)
� Most specific clause is
IF not(action(A,shields_on)) and

not(action(A,shields_off)) and

shields_now(A,on) and
battery_above(A,0) and

battery_above(A,5) and

battery_below(A,15)

THEN shields_next(A,off)

� All learned rules are generalizations of this
clause

5

Trial Run
� In order to prototype the methods and

work out kinks in the various tools, we
first created a simplified example by
hand, removing soar temporarily from
the picture.

I nd uc e d Rule s
EFFECT RULES

IF: action(State,shields_on) and
battery_above(State,0).

THEN: shields_next(State,on)

IF: action(State,shields_off).
THEN: shields_next(State,off)

6

Induced Rules
FRAME AXIOMS:

IF: not(action(State,shields_on)) and
shields_now(State,off).

THEN: shields_next(State,off)

IF: not(action(State,shields_off)) and
shields_now(State,on) and
battery_above(State,10).

THEN: shields_next(State,on)

IF: battery_below(State,15).
THEN: shields_next(State,off)

C ur r ent / F ut ur e W o r k
� Our experiment had good distribution of

positive and negative examples. In order to
use more complete datasets effectively, we
may need to be more selective when
choosing positive and negative examples.

� Most background knowledge is irrelevant to
any given predicate. May need to provide
additional bias to help ILP decide what is
important.

� Have tested on a single, simple concept.
Long range goal requires learning over
numerous concepts.

7

� Successfully
learned informative
rules in hand
constructed test
domain.

� We don’t know
whether using
complete background
knowledge and pulling
training examples
automatically from long
soar traces will
overwhelm the system.

Nuggets Coal

