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Action M od el s
� Basic Idea: agents should be able to make 

plans about taking actions to achieve goals.

� Problem: Action effects are complicated and 
have bizarre corner cases, so they are hard 
and time consuming to explicate.

� Solution: We want agents that can learn 
about actions from experience to better 
understand their environment.
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Shields in T a nk so a r
� Action: move-left

� Battery: 35

� Radar at full power

� Shields on

� Incoming missile 
from behind

� Will the shields hold 
out?  Why?

Captain!  She 
can’t take 
much more!

W hy  is t his ha r d?
� Lots of factors influence how even the 

simplest aspects of the environment 
(such as the shields) change over time

� Action effects have a temporal aspect 
that is hard to observe.  (i.e. destroying 
the enemy with a missile requires 
repetition and happens after a delay.)
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Inductive Logic 
P r ogr a m m ing

� ILP can handle structured, first-order 
descriptions of the environment.

� Takes a collection of positive and 
negative examples and tries to learn 
rules that cover as many examples as 
possible without covering more 
negative examples than necessary.

B a ck gr ound K now l edge
� The background is 

essentially just all the 
sensor information 
from any state in the 
range along with a 
record of which actions 
were taken

� This information is 
pulled directly from a 
soar trace and 
converted into a first-
order logic 
representation.

� shields_now(1, off ).

� battery(1, 200 ).

� radar(1, 0 ).

� action(1,shields_on).
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Positive&Negative 
E x am p l es

� The state before a 
predicate becomes 
true (or false) is a 
positive (or negative, 
respectively) example 
for that predicate.

� This information is also 
extracted from a soar 
trace.

If shields are on at state 
2:

� State 1 is a positive 
example for 
shields_next(on).

� State 1 is a negative 
example for
shields_next(off).

L ear n in g
� Learned Clause: shields_next(state, status)
� Most specific clause is
IF not(action(A,shields_on)) and

not(action(A,shields_off)) and

shields_now(A,on) and
battery_above(A,0) and

battery_above(A,5) and

battery_below(A,15) 

THEN shields_next(A,off)

� All learned rules are generalizations of this 
clause
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Trial Run
� In order to prototype the methods and 

work out kinks in the various tools, we 
first created a simplified example by 
hand, removing soar temporarily from 
the picture.

I nd uc e d  Rule s
EFFECT RULES

IF: action(State,shields_on)  and
battery_above(State,0).

THEN: shields_next(State,on)

IF: action(State,shields_off).
THEN: shields_next(State,off) 
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Induced Rules
FRAME AXIOMS:

IF: not(action(State,shields_on)) and 
shields_now(State,off).

THEN: shields_next(State,off)

IF: not(action(State,shields_off)) and 
shields_now(State,on) and
battery_above(State,10).

THEN: shields_next(State,on) 

IF: battery_below(State,15).
THEN: shields_next(State,off) 

C ur r ent / F ut ur e W o r k
� Our experiment had good distribution of 

positive and negative examples.  In order to 
use more complete datasets effectively, we 
may need to be more selective when 
choosing positive and negative examples.

� Most background knowledge is irrelevant to 
any given predicate.  May need to provide 
additional bias to help ILP decide what is 
important.

� Have tested on a single, simple concept.  
Long range goal requires learning over 
numerous concepts.
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� Successfully 
learned informative 
rules in hand 
constructed test 
domain.

� We don’t know 
whether using 
complete background 
knowledge and pulling 
training examples 
automatically from long 
soar traces will 
overwhelm the system.

Nuggets Coal


