
The STI: Connecting Soar’s Tools

Douglas Pearson
Scott Pultz

Soar Workshop 22

June 2002



Soar Workshop 22 2

The Problem

• Soar’s tools are largely disconnected from
Soar itself.

• For example, productions edited in Visual
Soar are sent to Soar by cutting/pasting.



Soar Workshop 22 3

It’s not a new problem

• There have been earlier integrated
environments
– SDE/Soar-mode : Built into Emacs.

– Frank Ritter : Nice environment in Lisp.

• Environment tied directly to a version of
Soar…but Soar changes rapidly.

• Tools proved difficult to maintain



Soar Workshop 22 4

The Goal

• To create a clean, general purpose interface
between Soar and any tool.

Soar Tool 
Interface (STI)

Soar Tool



Soar Workshop 22 5

Design Principles

• Decoupled
• Clear Interface

• Language Flexibility
• Extensibility (Soar 8 -> Soar 9)
• Scalability

• Easy to Implement



Soar Workshop 22 6

Our Solution: The STI

• Soar Interface Layer
– Abstracts over the command set going to Soar

and from Soar.

– E.g. Send-production, edit-production.

• Socket Layer
– Low level communication of data.



Soar Workshop 22 7

Soar Tool Interface

Tcl(TSI)

Visual Soar
(JAVA)

Soar DLL

Socket
Library

Socket
Library

Socket
Library

Runtime
Library

Tool
Library

Tool
Library

Java Process

Future Tool Process

Tcl Process



Soar Workshop 22 8

Visual Soar to Soar Example

• Select commands in Visual Soar from menu• Launch Soar and Visual Soar
– They automatically connect to each other.

– Can select specific agents for Visual Soar to talk to



Soar Workshop 22 9

Visual Soar to Soar Example (2)

• Select commands in Visual Soar from menu



Soar Workshop 22 10

Visual Soar to Soar Example (3)

• Command is sent to Soar agent

Tcl(TSI)

Visual Soar
(JAVA)

Soar DLL

Socket
Library

Socket
Library

Socket
Library

Runtime
Library

Tool
Library

Tool
Library

Java Process

Future Tool Process

Tcl Process



Soar Workshop 22 11

Soar To Visual Soar

• Commands can be sent the other way too



Soar Workshop 22 12

Implementation

• Main interface layer and socket code
written in C/C++, compiled into single
shared library.

• Small additions to Visual Soar/TSI to
connect to STI library.

• Tool-side logically very similar to Agent-
side in code and interface.

• Lots of code re-use.



Soar Workshop 22 13

Implementation (2)

• Initial prototype implemented:
– Send Production
– Send File
– Matches
– Excise
– Edit production (from Soar to tool)
– Send raw command
– Entire connection/messaging infrastructure.



Soar Workshop 22 14

Design Choices

• Interface library in C/C++
– Almost all languages support calls to C
– Separate library decouples code from specific

Soar version

• Socket layer
– Solves cross process communication problem
– Simple and widely available
– Could be replaced later if necessary



Soar Workshop 22 15

Meeting Design Goals

• Decoupled – Tool doesn’t talk directly to Soar

• Clear Interface – Explicit interface layer

• Language Flexibility – Universal calls to C

• Extensibility – Either side can change more easily

• Scalability – Commands all take constant time

• Easy to Implement – 1 month



Soar Workshop 22 16

Next steps

• Extending the command set
• Improving feedback as commands are

executed
• Extending commands to support parameters
• Saving user choices between sessions

• Interface to “G-Ski” instead of TSI?
• Lots more…



Soar Workshop 22 17

More Information

• http://www.threepenny.net/~soartech/download.html
– Latest version of STI.

• Full spec available.

• Email: doug@threepenny.net

• Email: scott@threepenny.net


