
The STI: Connecting Soar’s Tools

Douglas Pearson
Scott Pultz

Soar Workshop 22

June 2002



Soar Workshop 22 2

The Problem

• Soar’s tools are largely disconnected from
Soar itself.

• For example, productions edited in Visual
Soar are sent to Soar by cutting/pasting.
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It’s not a new problem

• There have been earlier integrated
environments
– SDE/Soar-mode : Built into Emacs.

– Frank Ritter : Nice environment in Lisp.

• Environment tied directly to a version of
Soar…but Soar changes rapidly.

• Tools proved difficult to maintain
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The Goal

• To create a clean, general purpose interface
between Soar and any tool.

Soar Tool 
Interface (STI)

Soar Tool



Soar Workshop 22 5

Design Principles

• Decoupled
• Clear Interface

• Language Flexibility
• Extensibility (Soar 8 -> Soar 9)
• Scalability

• Easy to Implement
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Our Solution: The STI

• Soar Interface Layer
– Abstracts over the command set going to Soar

and from Soar.

– E.g. Send-production, edit-production.

• Socket Layer
– Low level communication of data.
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Visual Soar to Soar Example

• Select commands in Visual Soar from menu• Launch Soar and Visual Soar
– They automatically connect to each other.

– Can select specific agents for Visual Soar to talk to
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Visual Soar to Soar Example (2)

• Select commands in Visual Soar from menu
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Visual Soar to Soar Example (3)

• Command is sent to Soar agent
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Soar To Visual Soar

• Commands can be sent the other way too
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Implementation

• Main interface layer and socket code
written in C/C++, compiled into single
shared library.

• Small additions to Visual Soar/TSI to
connect to STI library.

• Tool-side logically very similar to Agent-
side in code and interface.

• Lots of code re-use.
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Implementation (2)

• Initial prototype implemented:
– Send Production
– Send File
– Matches
– Excise
– Edit production (from Soar to tool)
– Send raw command
– Entire connection/messaging infrastructure.
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Design Choices

• Interface library in C/C++
– Almost all languages support calls to C
– Separate library decouples code from specific

Soar version

• Socket layer
– Solves cross process communication problem
– Simple and widely available
– Could be replaced later if necessary
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Meeting Design Goals

• Decoupled – Tool doesn’t talk directly to Soar

• Clear Interface – Explicit interface layer

• Language Flexibility – Universal calls to C

• Extensibility – Either side can change more easily

• Scalability – Commands all take constant time

• Easy to Implement – 1 month
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Next steps

• Extending the command set
• Improving feedback as commands are

executed
• Extending commands to support parameters
• Saving user choices between sessions

• Interface to “G-Ski” instead of TSI?
• Lots more…
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More Information

• http://www.threepenny.net/~soartech/download.html
– Latest version of STI.

• Full spec available.

• Email: doug@threepenny.net

• Email: scott@threepenny.net


