Using ACT-R to Enable Stochasticity, Spatial Awareness, and Knowledge Generalization in MOUT Agents

Bradley Best (bbest@andrew.cmu.edu) Christian Lebiere (cl@cmu.edu) Human Computer Interaction Institute Carnegie Mellon University

Project Goal: Virtual MOUT Agents Demonstrating Adaptivity, Reactivity, Complexity and Plausibility

- We need agents that are...
 - more independent, robust
 - more adaptive to new situations
 - less computationally demanding
 - more plausible
 - harder to game (more transfer to real world)
 - less predictable, more variable (e.g. different capabilities, cultural attributes, etc)

- Approach:
 - Use the ACT-R cognitive architecture for human behavior representation
 - Use the Infiltration mod for Unreal Tournament as a virtual environment

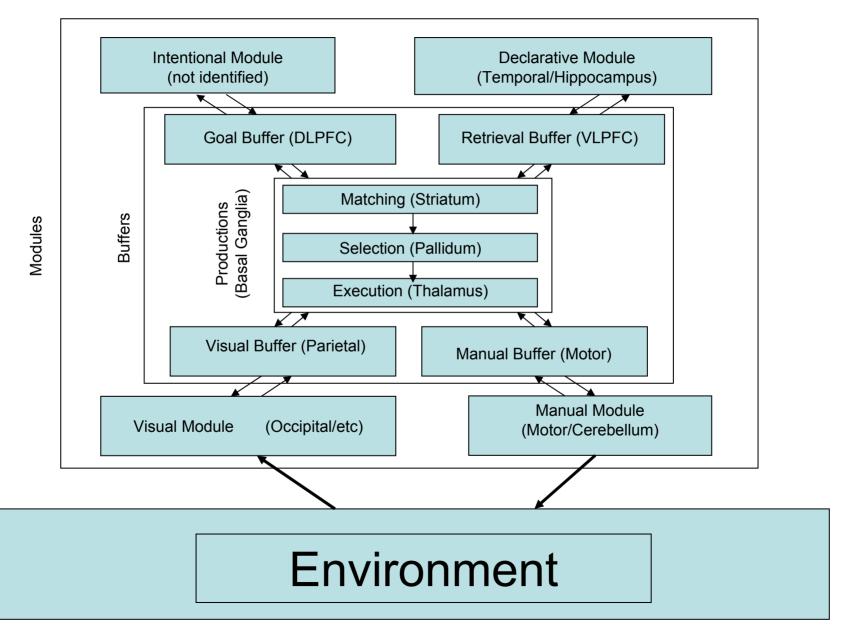
Grounding Agents in a Cognitive Architecture Overcomes Limitations

- A <u>cognitive</u> <u>architecture</u> is an empirically derived and validated development framework for simulating human behavior, such as planning, problem solving, and decision making, in complex tasks
- Why a cognitive architecture?
 - Affordable: mechanisms (learning, perceptual, pattern matching, etc) are built-in so capabilities can be expressed at a high-level
 - Validated: human limitations and capacities are built in, which ensures plausibility of agent
 - Broad user community has validated the architecture against a wide range of empirical results and continuously extends the architecture to account for new findings
 - Leveraging others work: reuse parts of models and paradigms develop by user community

The ACT-R Cognitive Architecture Provides a Mature and Comprehensive Platform

- Maturity: Framework has been in use for 20+ years
 HAM (1973) -> ACT-E (1977) -> ACT* (1978) -> ACT-R (1993)
- Fundamentals of architecture:
 - Integrates perceptual, motor and cognitive modules to provide situation awareness
 - Hybrid of symbolic (rule-based systems) and sub-symbolic (neural networks) processes provides best of each approach
 - Simulates human capacities for learning, memory, and perception
 - Grounded in broad empirical findings of cognitive psychology
 - Goal-directed behavior is a basic primitive
 - Productions match goals against contents of goal buffer
 - Effects of individual differences and behavior moderators (fatigue, motivation, etc) can be modeled through principled parameter variations

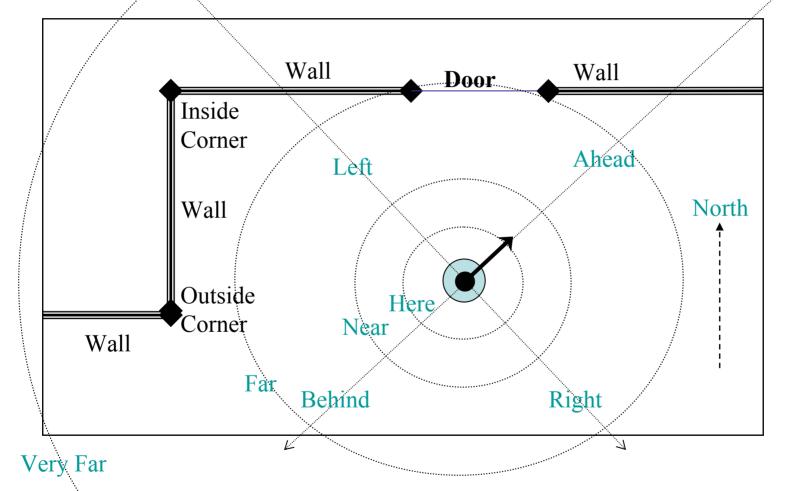
ACT-R 5.0 Architecture



ACT-R MOUT Agent Contributions

- Plausible spatial awareness and navigation
 - Avoid predictiveness of point-based navigation
 - Cost-effective (automated) encoding of maps into model
 - Plausible situational awareness
 - Modeling of human limitations such as disorientation, forgetting
- Behavioral transparency
 - Direct encoding of MOUT doctrine at symbolic level
 - Can be automated through graphical authoring tool
- Behavioral variation
 - Stochasticity built into the architecture at all levels
 - · does not repeat behavior but instead provides breadth of training
 - Provides diverse training experience from limited number of scenarios
 - Adaptivity: adapts tactics on the fly to behavior of trainee
- Behavioral generalization
 - Knowledge generalizes to similar situations
 - Robustness: agent does not fall into black holes but instead generalizes knowledge to new situations
 - Provides robust agent behavior for unconstrained simulation

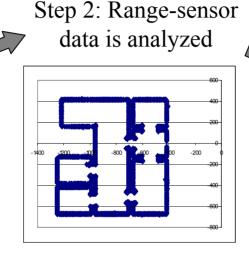
Agents Use a Psychologically Plausible Representation* of the Space Around Them:



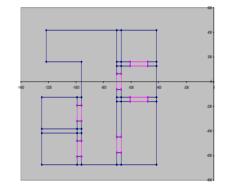
*Declarative memory is constantly updated to maintain a set of elements corresponding to both dynamic and static visible and audible components of the environment.

Automatic Mapping Agent Generates Representation

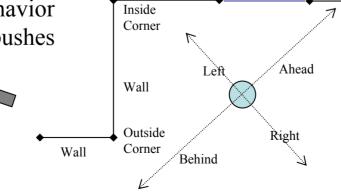
Step 1: Agent explores area collecting range-sensor data



Step 3: Data is converted to a high-level representation



Step 5: Complex agent behavior such as ability to plan ambushes



Wall

Step 4: Agent uses representation to reason about its environment

Wall

Door

Benefits of Plausible Spatial Representation

- Spatial awareness is encoded in a form that makes sense to SMEs
 - Architectural buffers hold current set of elements in awareness
 - Includes (some of) what is visible (e.g. enemy, state of self, goal)
- Representation is similar to that used in MOUT doctrinal manuals
 - Symbolic description: knowledge is inspectable
 - Abstract/NL description: e.g. production cond. "if enemy is to left of self"
- Behavior is robust
 - Pitfalls of waypoint-based navigation (e.g. stuck in doorways): moving wrt points in space, not features of architecture (e.g. obstacles)
 - Limited to actions that make sense in immediate visual environment (e.g. won't try to move to doorway they can't see)
- Transferring knowledge from SMEs and doctrinal manuals to agents is straightforward
 - No need for change in representation
 - Authoring tool is similar to doctrine diagrams

Spatial Awareness Used in Ambush

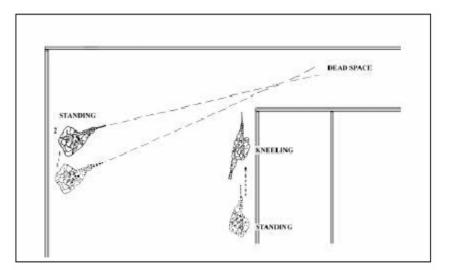
Behavioral Transparency: Action Plans Correspond to MOUT doctrine

- **Example**: doctrinal plan to clear an L-shaped hallway
 - Step 1: To clear an L-shaped hallway, the team leader first moves to the inside corner
 - Representation from model* of this step in the plan:

(plan-clear-L-shaped-hallway-leader-step-1

isa action-plan plan clear-L-shaped-hallway index 1 role leader type move

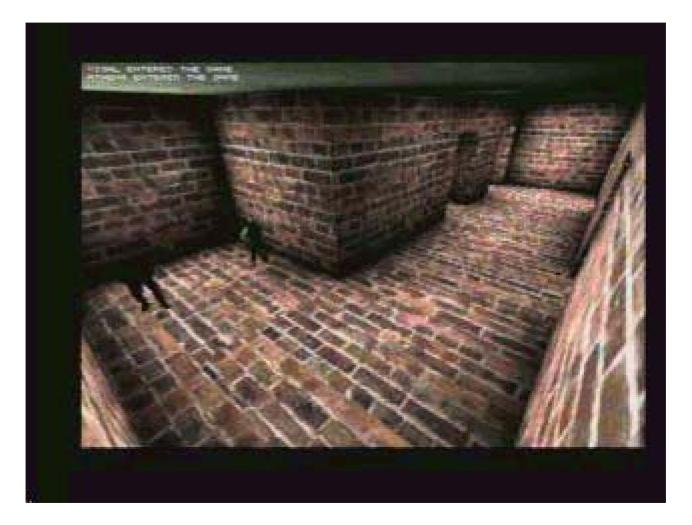
argument inside-corner)



*Representation proudly plagiarized from existing model of human sequence learning performance

Figure A-45. Clearing an L-Shaped Hallway

2-Squad Clearing L-Shaped Hallway

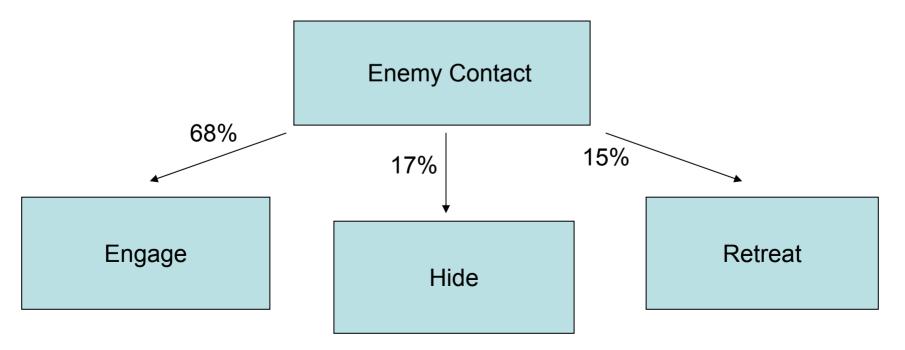


Variable Behavior is the Key to Flexible, Realistic Opponents

- Behaviors may range from completely determined by the situation to completely arbitrary, as appropriate
 - Highly practiced behaviors tend to be less variable
 - Variation may be tuned at the level of individual actions or the whole simulation
- Even simple scenarios may play out differently each time
 - This creates greater realism without the extra work of designing more scenarios
 - Variation in selecting among possible actions is key, with the more likely actions emphasized while the less likely ones are still possible

Noise and Stochasticity in ACT-R Automatically Yields Variation of Behavior

- Upon noticing an enemy, an ACT-R agent may choose one of several behaviors
 - Symbolic information and sub-symbolic information interact to shape decisions



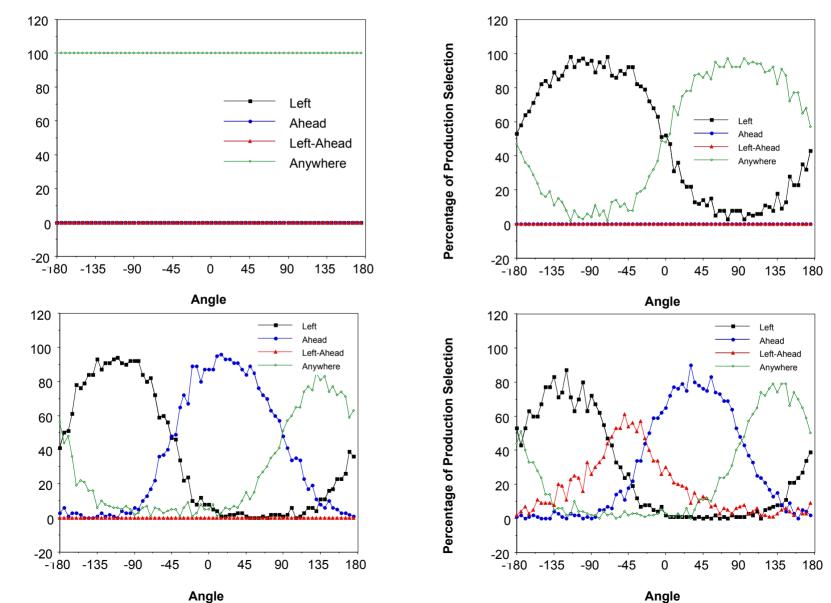
Knowledge Generalization Problem

- Difficult to specify exact range of applicability of rules
- In dynamic, approximate and uncertain environments, symbolic conditions are often too coarse and limited
- Need something like the human ability to generalize a given technique to a flexible range of situations
- Combinatorics of many conditions create excess rules
- Large rulesets need to be painstakingly prioritized to manage interactions between pieces of knowledge
- Adding to knowledge base may require significant redesign due to interactions of new and old knowledge

A Knowledge Generalization Solution

- Make production rules selection depend on <u>similarity</u> to canonical example as well as <u>utility</u>
 - Exploit ACT-R hybrid nature to combine those quantities
 - Similar to memory partial matching, fuzzy logic, and neural networks
 - Sensitive to learning of a production utility
 - Sensitive to breadth of knowledge in given area
 - Substantially reduces complexity (number of conditions) and number of rules
 - New knowledge integrates with old

New Knowledge Fits with Old



Summary of ACT-R MOUT Bot Capabilities

- Supports **VIRTE** Demo 2 (MOUT Training)
- Capabilities added:
 - Entities follow MOUT doctrine (USMC)
 - Entities negotiate shooter/covering roles
 - Entities create **spatial maps** of their surroundings
 - Create unfolding spatial maps on the fly, as when in unfamiliar surroundings
 - Knowledge base detailing layout of doors, walls, openings automatically created out front, simulating familiarity with surroundings, or accumulated through experience
 - Entities capable of line-of-sight targeting and understand concepts such as cover and concealment
 - Capable of using spatial knowledge to plan ambushes
 - Single or multiple computer control of interacting entities that communicate spatial knowledge of structures and adversaries

Gold Nuggets: What is ACT-R Making Easy?

- Representation
 - Declarative/Procedural distinction
 - Plans are declarative, transparent
 - Actions are non-verbalizable
- Plausible memory and perception (imperfect)
 - Plan following, forgetting
 - Perception (visible items are subset of declarative memory)
 - Imperfect memory for visited locations
- Sub-symbolic (neural level)
 - Stochasticity
 - Partial matching
 - Production generalization and specialization

Lumps of Coal: What is ACT-R Making Hard?

- Integration with applications
 - Intervening software layer
 - LISP: garbage collection and real-time constraints
- Software engineering
 - Modest debugging tools
 - Practical limits on size of production set
 - No rete net
 - Difficulty in tracking down performance problems (many suspects, no smoking guns)
- Metacognition lacking
 - What was the bot do<u>ING</u> for the last few seconds, minutes?
 - Not the same as knowing what the current goal is

From Where is ACT-R Coming, To Where is it Going?

- Purpose: to account for empirical data
 - Roots in memory experiments 20+ years ago
 - This includes accounting for intelligent, goal-directed human behavior
- Procedural/Declarative distinction
 - Anonymous member of Soar/ACT-R Community: "I still don't believe in the procedural/declarative distinction, but you should keep it in, it's useful."
- Symbolic/Sub-symbolic distinction
 - Sub-symbolic level is stochastic
 - Game playing (e.g., rock, paper, scissors) enhanced by stochastic behavior
- Theoretical validation at neuroscientific level
 - Many theories can predict behavioral data, but collection of neuroscientific data may sort them out

References

- Best, B., Lebiere, C. & Scarpinatto, C. (2002). Modeling Synthetic Opponents in MOUT Training Simulations Using the ACT-R Cognitive Architecture. In *Proceedings of the 11th Conference on Computer Generated Forces and Behavior Representation*.
- Best, B. & Lebiere, C. (2003). Spatial Processing Requirements for Navigation and Interaction with Cognitive Agents in a 3-D Interior Space. Presented at the Symposium on Psychological Space at the 5th International Conference on Cognitive Modeling.
- Best, B. & Lebiere, C. (2003). Spatial Plans, Communication, and Teamwork in Synthetic MOUT Agents. In *Proceedings of the 12th conference on Behavior Representation In Modeling and Simulation*.
- Best, B. & Lebiere, C. (2003). Teamwork, Communication, and Planning in ACT-R Agents Engaging in Urban Combat in Virtual Environments, To be presented at the 2003 IJCAI Workshop on Cognitive Modeling of Agents and Multi-Agent Interactions.