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Outline

e Revisit Soar versions 1-8
» Technical and research i1deas

« Representative systems — knowledge
« Representative applications and research



Research Methodology

. Pick basic principles to guide development
. Pick desired behavioral capabilities

. Make design decisions consistent with above

Build/modify architecture

. Implement tasks

Evaluate performance



Principles

Draw from “intelligence” in humans and machines

Start with architecture
« The fixed mechanisms that support general intelligence

Attempt to create a uniform, universal architecture
» Use task independent representations and processes.

 Architectural mechanisms shouldn’t constrain system to
specific approaches for all problems

Minimal architectural mechanisms



Desired Behavioral Capabilities

Interact with a complex world - limited uncertain sensing
Respond quickly to changes in the world

Use extensive knowledge

Use methods appropriate for tasks

Goal-driven

Meta-level reasoning and planning

Coordinate behavior and communicate with others

Learn from experience

Integrate above capabilities across tasks

Behavior generated with low computational expense



Pre-Soar

Logic Theorist (LT) (1955)

 First symbolic problem solver with heuristics

GPS (1958)

« Means-Ends Analysis and Recursive Goals

Problem Spaces (1965)

e Uniform Task Structure

Production Systems (1967)

* Uniform, Incremental, Context-sensitive Knowledge
Representation

Weak Methods (1969)

 Organization of General Control Knowledge



Soar 1 — 1982
Goals

e Develop an architecture that supports multiple methods
» Use different methods for different tasks
» Use different methods for different subtasks
* Methods determined by available knowledge



Soar 1: Approach

e Develop an Al architecture that supports problem spaces
« Explicit representation of goals, problem spaces, states, operators
 All tasks cast as decision making in a problem space
» All knowledge supports problem space functions

e Use a parallel production system for long-term memory

* Working memory contains current and proposed
» goals,
» problem spaces,
e states,
* operators.
* Productions encode problem space knowledge
* Propose object, vote on objects, apply operators.

* Decision procedure tallies votes for selecting objects



Working memory is a set, not a graph
Special slot for selected goal, problem space, state, operator
Votes are tallied to select current object




Contrast with Other Approaches

« STRIPS — for each operator, single representation of
 operator preconditions and actions

e GPS — for each operator, single representation of
 operator preconditions, actions
« table of connections

* Soar
» Operators are first-class objects
* Independent knowledge for

* Proposal
» Selection
» Application

« Can be disjunctive, conditional
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Weak Methods in Soar 1

* By adding rules about task, could change methods
 Blind search
* Avoid duplicate states
« Heuristic search — task specific heuristics
* Means-ends analysis
« Hill climbing
 Steepest ascent hill climbing
 Breadth-first search
* Depth-first search
» Best-first search

* Not a big switch where method 1s selected explicitly
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Soar 1 Achievements

Unified problem spaces and production systems
Basis for Universal Weak Method

» Separate representation of control knowledge
* Decisions based on dynamic integration of knowledge

Systems built: Variety of simple puzzles and toy tasks
Users: 1
Implemented in XAPS 2

* Rosenbloom’s eXperimental Activation Production System
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Soar 1 Shortcomings

* No subgoals
* No meta-level reasoning

* Voting results may not reflect knowledge
* More votes # more evidence, more knowledge
 Limited expressability of knowledge — no partial orders.
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Contributing Soar Major Example Implementation
Ideas Version Results Systems

Universal Xaps
N ) ) ) (B
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Soar 2 — 1983

Any goal principle

« System can generate any and all types of goals

Universal subgoaling
* Single mechanism for creating all types of goals

Automatic subgoaling
» All subgoals generated automatically

Preference-based decision procedure
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Soar 2 Approach

Symbolic preference scheme replaces voting
* Acceptable, reject, better, worse

Detect inability to make decisions automatically:
« Impasses: tie, conflict, no-change in decision

Create subgoal automatically to resolve impasse
* Recursively use problem spaces in subgoal
* Subgoal parameters and results are determined dynamically by
problem solving

Working memory becomes graph structure rooted 1n goals
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Soar 2: Selection Space

* Meta-level reasoning with evaluation

 Basis of many weak methods

* Depth-first search, mini-max, alpha-beta, iterative
deepening, progressive deepening, ...
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Contributing Soar Major Example Implementation
Ideas Version Results Systems

( 1 [ Universal | [ Rl-Soar | [ OPS5
- \Soar2 _ 1983) __Subgoaling ] | Dypar-Soar )] |  Lisp |

( 1 [ Universal | | 1 [ xaps2 ]
- kSoarl - 1982) Weak Method) | Toy Tasks ] | Lip |
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Soar 2 Shortcomings

* No learning

e Must resolve same impasse multiple times during a task
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Soar 3 — 1984

 How can learning be integrated with problem solving?
e Learn when knowledge 1s incomplete: impasses
* Learn when knowledge becomes available: results
* Connect situation where learning 1s needed to when it 1s available
« Knowledge transfer depends on similarity of situation
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Soar 3 Approach

Inspired by “chunking” as developed in XAPS.
A rule 1s learned that summarizes processing in a subgoal.

Conditions based on working memory elements tested by

productions fired in subgoals.
 Later restricted to just those tested on path to results.
* Also mspired by goal-regression learning — Mitchell, DeJong

Actions are based on results of subgoal.

supergoal subgoal results:
WMEs . WMEs supergoal
ﬁ~‘ WMEs
O
\
—
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Soar 3: Chunking Example
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Within Task Transfer: chunk learned in subgoal applies to avoid future search

Across Task Transfer: chunk learned in one problem transfers to another

22



Soar 3 Results

* General learning method integrated with problem solving.
* Learns incrementally and continually on all tasks.
» Learns from both success and failure.
» Learns a variety of types of knowledge:

» Selection knowledge, operator application, operator creation, state refinement,
problem formulation

* Automatically converts deep knowledge to shallow knowledge
 RI1-Soar

e Users: §
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Contributing Soar Major Example Implementation
Ideas Version Results Systems

Soar3 - 1984 f ene?al R1-Soar

§ )\ Learning ] | )

[ 1 [ Universal | [ Ri-Soar | [ OPS5
- \Soar2 _ 1983) _Subgoaling ] | Dypar-Soar ) |  Lisp

( 1 [ Universal | [ 1 [ xAPS2
- kSoarl - 1982) Weak Method) | Toy Tasks ] | Lip |
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Soar 4 — 1986

First version prepared for external release
e Manual published, ported to Common Lisp, first Soar Workshop

Explosion in applications and users
. > 50 by 1988

Explosion 1n types of learning and problem solving

Newell proposes Unified Theory of Cognition
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Soar 4 Results

Knowledge-based Systems
Algorithm design (Designer-Soar, Cypress-Soar)
Medical Diagnosis (NeoMycin-Soar, Red-Soar)
Production Line Scheduling (Merl-Soar)
Chemical Process Modeling
Natural Language Understanding (NL-Soar)
Intelligent Tutoring (ET-Soar)
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Unified Theories of Cognition

Allen Newell, 1989:

“I mean a single set of mechanisms for all of cognitive behavior.”
* Problem solving, decision making, routine action
* Memory, learning, skill
* Perception, motor behavior
* Language
 Motivation, emotion
* Imagining, dreaming, daydreaming, ...”

“Our ultimate goal is a unified theory of human cognition. This
will be expressed, I have maintained, as a theory of the
architecture of human cognition—that 1s, of the fixed (or slowly
varying) structure that forms the framework for the immediate
processes of cognitive performance and learning.”
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Soar 4 Results:
Unified Theory of Cognition (1987)

Immediate Reasoning Tasks
Syllogisms

Balance Beam
Cryptarthmetic

Towers of Hanoi
Transcription Typing
Instruction for simple tasks
Verbal learning

Series completion
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Contributing Soar Major Example Implementation

Ideas Version Results Systems
:Soar4- 1986: UTC ( E{:‘;‘z [ Eli(;fg:; ]
:Soar3-1984: SZ?EE; R1-Soar
[ rtren sz 1) (et ] () (T
- :Soarl - 1982: :\Vlejaflliﬁrestilo c; :Toy Tasks: : Xﬁl:iz J
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Soar 4 Shortcomings

 Limited interaction with external environments

« Excessive copying of state structures during operator
application
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Soar 5 — 1989

 Add interaction with external environments

* Improve efficiency by eliminating state copying
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Soar 5 Approach

Modify problem space computational model

Only a single state per goal
 State changes through operator application or perception

Operator productions destructively modify current state
« Retractable entailments: 1-support

 Automatic classification of rules into entailments/destructive
* 1-support vs. o-support

Operators stay selected until terminated with a reconsider
preference: @

Justifications built for results
* Not required in Soar 4 because everything o-supported
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Soar 5 Results

 Integrates interaction, reaction, planning, learning

e Four level architecture
« Motor programs: innate — not subject to cognition
 Parallel Production System: Reflexes
* Operators: Deliberation
* Subgoals: Planning and Hierarchical Reasoning

 Used worldwide at over 15 sites, 100 researchers
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Soar 5 UTC Applications

Number conservation (Q-Soar)
Concept learning (SCA)

Visual Attention (NOVA)
Sentence parsing (NL-Soar)
Learning Physics (Dyna-Soar)
Browsing (Browser-Soar)

Highly interactive tasks (HI-Soar)
Decision modeling (NTD-Soar)

Learning task-action mappings (TA-Soar)
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Contributing Soar Major Example Implementation
Ideas Version Results Systems

4 ) ( ) (

soars-1989| | TEE || oSonr
:Soar4- 1986: UTC ( E{:‘;‘z \ [ Eli(;fg:; ]
:Soar3-1984: SZ?EE; R1-Soar
o0 (e | (] [
:Soarl - 1982: :\Vlejaflliﬁrestilo c; :Toy Tasks: : Xﬁl:iz :
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Soar 5 Shortcomings

o Software rot
e Difficult to maintain and extend
* Code 1s > 10 years old

 Significant efficiency problems with big systems and

long runs
* Having impact on initial versions of Air-Soar
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Soar 6 — 1992

« Significantly improve efficiency, portability, correctness
maintainability
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Soar 6 Approach

e Portto C
« Rewrote from scratch by Bob Doorenbos

* Provide efficiency for large highly interactive systems.
« 8-10 times faster than Soar 5 for medium size tasks (1000 rules)

» 20-80 times faster for large tasks and long runs.
 Dispatcher-Soar learning > 100,000 chunks without significant

slowdown
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Soar 6 Applications

* Cognitive Modeling, many with learning

Play Super Marios (HI-Soar)
Solve Electric/Magnetic Physics Problems (EFH-Soar)
Natural Language Processing (NL-Soar)

Medical Diagnosis using abduction (Red-Soar)
Air Traffic Controller (ATC)

e Learning Systems

Learning by Instruction (Instructo-Soar)
Learning from interaction with environment (IMPROYV)
Symbolic Category Learning (SCA-2)

* Performance Systems

Fly SGI flight simulator (Air-Soar)
First versions of military simulation agents (TacAir-Soar, RWA-Soar,
Debrief)

Teamwork (STEAM)
Training and Instruction (STEVE)
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Soar 6 Shortcomings

e No runtime environment in C like 1n Lisp

 Daifficult to integrate Soar with other applications
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Soar 7 - 1996

 Make easier to:
e create runtime tools
e connect to external environments
 run multiple agents

 Integrated Soar with Tcl/Tk

 Two companies use Soar

 ERS: ExpLore Reasoning Systems
KB Agent

e Soar Technology, Inc.
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Soar7 Applications

Final TacAir-Soar, RWA-Soar
« Attention modeling

Teamwork applications using STEAM:
« RWA-Soar, Robo-cup, Electric Elves (organization management and teamwork)

Learning multi-tasking (EPIC-Soar)

Modeling air-traffic controllers
*  Working memory decay model
Vision-processing (Vision-Soar)
Language Generation: (LG-Soar & continued work on NL-Soar)

More games:

* Descent-Soar, Quake-Soar
« PACMAN

Mission rehearsal bots
e HTNs
* Emotion Modeling
e Social Interactions

Organization modeling (Country Chaos)
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Soar 7 Shortcomings

Race conditions between rules and across subgoals
Inconsistency in reasoning across subgoals possible
Learning could create rules that would never fire

Output could be inconsistent with selected operators
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Soar 8 - 1999

* Fix problems with interactions with external environments

« Across goal consistency
» Goal dependency sets
 [terative instead of parallel processing of goals
* Non-contemporaneous chunks

* Change operator selection to be 1-supported
» Eliminate reconsider preference

* Change Decision Cycle
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Processing Across Substates

e Problem:
« Rules can fire 1n substates even though impasse 1s about to be
resolved
* Run-away substate can generate results that are invalid

e Approach
» (Cascade rules from oldest to newest substate
« Remove substates 1f impasse 1s resolved
« Recompute match set after each substate processed

—_—
—_—

* Implications —
* Avoids firing rules that will be irrelevant .

 Avoids some race conditions 4



Soar’s Decision Cycle

Soar 7

Input lRule Firing) »| Decision
N R /Propose Operators\ [App ly Op eratoﬁ
oar o. (rules) (rules)
2 2| S - 2
s 8| & 3 =
5|5 5| & 5 O
& 1& 2| © 3 .
2 12 S| & = -
s1g gl g a2 8
»| Input | E E e Select Operator < < Output | _
- — \.
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Soar 8 Applications

« External Interaction
* Play Quake (Quakebot)
e Computer game non-player characters (Haunt II)
* Adversaries for military simulations (MOUTBot)
« Unmanned Air Vehicle (UAV) control

« Social Interaction Agents
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What’s Next?

Soar 8.5

* Bug fixes
* Numeric indifferent preferences

Soar 9

* Working memory activation

* New architectural learning mechanisms

» Reinforcement learning
* Episodic learning?

* Rule decay?
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Biggest Surprises

» Lack of buy in Al to Soar’s best ideas
* Open decision making for operator selection

* Success of niche Al
* Specialized techniques for specific problems

« Difficulty of finding applications that require human-
level Al
» Military Simulations
* Computer Games
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Where does Soar sit today?

* Best symbolic architecture for building complex,
knowledge-rich performance systems.
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