Evolution of Soar

based on “The Evolution of the Soar Architecture” Mind Matters, 1992
Laird and Rosenbloom

John E. Laird
University of Michigan
June 26, 2003
23rd Soar Workshop

Outline

e Revisit Soar versions 1-8
» Technical and research i1deas

« Representative systems — knowledge
« Representative applications and research

Research Methodology

. Pick basic principles to guide development
. Pick desired behavioral capabilities

. Make design decisions consistent with above

Build/modify architecture

. Implement tasks

Evaluate performance

Principles

Draw from “intelligence” in humans and machines

Start with architecture
« The fixed mechanisms that support general intelligence

Attempt to create a uniform, universal architecture
» Use task independent representations and processes.

 Architectural mechanisms shouldn’t constrain system to
specific approaches for all problems

Minimal architectural mechanisms

Desired Behavioral Capabilities

Interact with a complex world - limited uncertain sensing
Respond quickly to changes in the world

Use extensive knowledge

Use methods appropriate for tasks

Goal-driven

Meta-level reasoning and planning

Coordinate behavior and communicate with others

Learn from experience

Integrate above capabilities across tasks

Behavior generated with low computational expense

Pre-Soar

Logic Theorist (LT) (1955)

 First symbolic problem solver with heuristics

GPS (1958)

« Means-Ends Analysis and Recursive Goals

Problem Spaces (1965)

e Uniform Task Structure

Production Systems (1967)

* Uniform, Incremental, Context-sensitive Knowledge
Representation

Weak Methods (1969)

 Organization of General Control Knowledge

Soar 1 — 1982
Goals

e Develop an architecture that supports multiple methods
» Use different methods for different tasks
» Use different methods for different subtasks
* Methods determined by available knowledge

Soar 1: Approach

e Develop an Al architecture that supports problem spaces
« Explicit representation of goals, problem spaces, states, operators
 All tasks cast as decision making in a problem space
» All knowledge supports problem space functions

e Use a parallel production system for long-term memory

* Working memory contains current and proposed
» goals,
» problem spaces,
e states,
* operators.
* Productions encode problem space knowledge
* Propose object, vote on objects, apply operators.

* Decision procedure tallies votes for selecting objects

Working memory is a set, not a graph
Special slot for selected goal, problem space, state, operator
Votes are tallied to select current object

Contrast with Other Approaches

« STRIPS — for each operator, single representation of
 operator preconditions and actions

e GPS — for each operator, single representation of
 operator preconditions, actions
« table of connections

* Soar
» Operators are first-class objects
* Independent knowledge for

* Proposal
» Selection
» Application

« Can be disjunctive, conditional

10

Weak Methods in Soar 1

* By adding rules about task, could change methods
 Blind search
* Avoid duplicate states
« Heuristic search — task specific heuristics
* Means-ends analysis
« Hill climbing
 Steepest ascent hill climbing
 Breadth-first search
* Depth-first search
» Best-first search

* Not a big switch where method 1s selected explicitly

11

Soar 1 Achievements

Unified problem spaces and production systems
Basis for Universal Weak Method

» Separate representation of control knowledge
* Decisions based on dynamic integration of knowledge

Systems built: Variety of simple puzzles and toy tasks
Users: 1
Implemented in XAPS 2

* Rosenbloom’s eXperimental Activation Production System

12

Soar 1 Shortcomings

* No subgoals
* No meta-level reasoning

* Voting results may not reflect knowledge
* More votes # more evidence, more knowledge
 Limited expressability of knowledge — no partial orders.

13

Contributing Soar Major Example Implementation
Ideas Version Results Systems

Universal Xaps
N))) (B

14

Soar 2 — 1983

Any goal principle

« System can generate any and all types of goals

Universal subgoaling
* Single mechanism for creating all types of goals

Automatic subgoaling
» All subgoals generated automatically

Preference-based decision procedure

15

Soar 2 Approach

Symbolic preference scheme replaces voting
* Acceptable, reject, better, worse

Detect inability to make decisions automatically:
« Impasses: tie, conflict, no-change in decision

Create subgoal automatically to resolve impasse
* Recursively use problem spaces in subgoal
* Subgoal parameters and results are determined dynamically by
problem solving

Working memory becomes graph structure rooted 1n goals

16

Soar 2: Selection Space

* Meta-level reasoning with evaluation

 Basis of many weak methods

* Depth-first search, mini-max, alpha-beta, iterative
deepening, progressive deepening, ...

C

A

B

[]

val(move-b) Eval(move-

tie

% move-C
—_—

—]

<

w

@

>

=

17

Contributing Soar Major Example Implementation
Ideas Version Results Systems

(1 [Universal | [Rl-Soar | [OPS5
- \Soar2 _ 1983) __Subgoaling] | Dypar-Soar)] | Lisp |

(1 [Universal | | 1 [xaps2]
- kSoarl - 1982) Weak Method) | Toy Tasks] | Lip |

18

Soar 2 Shortcomings

* No learning

e Must resolve same impasse multiple times during a task

19

Soar 3 — 1984

 How can learning be integrated with problem solving?
e Learn when knowledge 1s incomplete: impasses
* Learn when knowledge becomes available: results
* Connect situation where learning 1s needed to when it 1s available
« Knowledge transfer depends on similarity of situation

20

Soar 3 Approach

Inspired by “chunking” as developed in XAPS.
A rule 1s learned that summarizes processing in a subgoal.

Conditions based on working memory elements tested by

productions fired in subgoals.
 Later restricted to just those tested on path to results.
* Also mspired by goal-regression learning — Mitchell, DeJong

Actions are based on results of subgoal.

supergoal subgoal results:
WMEs . WMEs supergoal
ﬁ~‘ WMEs
O
\
—
= | 21

Soar 3: Chunking Example

tie

move-c move-b
A||B — > |A||B||C —*

B

val(move-b) Eval(move-
C

Within Task Transfer: chunk learned in subgoal applies to avoid future search

Across Task Transfer: chunk learned in one problem transfers to another

22

Soar 3 Results

* General learning method integrated with problem solving.
* Learns incrementally and continually on all tasks.
» Learns from both success and failure.
» Learns a variety of types of knowledge:

» Selection knowledge, operator application, operator creation, state refinement,
problem formulation

* Automatically converts deep knowledge to shallow knowledge
 RI1-Soar

e Users: §

23

Contributing Soar Major Example Implementation
Ideas Version Results Systems

Soar3 - 1984 f ene?al R1-Soar

§)\ Learning] |)

[1 [Universal | [Ri-Soar | [OPS5
- \Soar2 _ 1983) _Subgoaling] | Dypar-Soar) | Lisp

(1 [Universal | [1 [xAPS2
- kSoarl - 1982) Weak Method) | Toy Tasks] | Lip |

24

Soar 4 — 1986

First version prepared for external release
e Manual published, ported to Common Lisp, first Soar Workshop

Explosion in applications and users
. > 50 by 1988

Explosion 1n types of learning and problem solving

Newell proposes Unified Theory of Cognition

25

Soar 4 Results

Knowledge-based Systems
Algorithm design (Designer-Soar, Cypress-Soar)
Medical Diagnosis (NeoMycin-Soar, Red-Soar)
Production Line Scheduling (Merl-Soar)
Chemical Process Modeling
Natural Language Understanding (NL-Soar)
Intelligent Tutoring (ET-Soar)

26

Unified Theories of Cognition

Allen Newell, 1989:

“I mean a single set of mechanisms for all of cognitive behavior.”
* Problem solving, decision making, routine action
* Memory, learning, skill
* Perception, motor behavior
* Language
 Motivation, emotion
* Imagining, dreaming, daydreaming, ...”

“Our ultimate goal is a unified theory of human cognition. This
will be expressed, I have maintained, as a theory of the
architecture of human cognition—that 1s, of the fixed (or slowly
varying) structure that forms the framework for the immediate
processes of cognitive performance and learning.”

27

Soar 4 Results:
Unified Theory of Cognition (1987)

Immediate Reasoning Tasks
Syllogisms

Balance Beam
Cryptarthmetic

Towers of Hanoi
Transcription Typing
Instruction for simple tasks
Verbal learning

Series completion

28

Contributing Soar Major Example Implementation

Ideas Version Results Systems
:Soar4- 1986: UTC (E{:‘;‘z [Eli(;fg:;]
:Soar3-1984: SZ?EE; R1-Soar
[rtren sz 1) (et] () (T
- :Soarl - 1982: :\Vlejaflliﬁrestilo c; :Toy Tasks: : Xﬁl:iz J

29

Soar 4 Shortcomings

 Limited interaction with external environments

« Excessive copying of state structures during operator
application

30

Soar 5 — 1989

 Add interaction with external environments

* Improve efficiency by eliminating state copying

31

Soar 5 Approach

Modify problem space computational model

Only a single state per goal
 State changes through operator application or perception

Operator productions destructively modify current state
« Retractable entailments: 1-support

 Automatic classification of rules into entailments/destructive
* 1-support vs. o-support

Operators stay selected until terminated with a reconsider
preference: @

Justifications built for results
* Not required in Soar 4 because everything o-supported

32

Soar 5 Results

 Integrates interaction, reaction, planning, learning

e Four level architecture
« Motor programs: innate — not subject to cognition
 Parallel Production System: Reflexes
* Operators: Deliberation
* Subgoals: Planning and Hierarchical Reasoning

 Used worldwide at over 15 sites, 100 researchers

33

Soar 5 UTC Applications

Number conservation (Q-Soar)
Concept learning (SCA)

Visual Attention (NOVA)
Sentence parsing (NL-Soar)
Learning Physics (Dyna-Soar)
Browsing (Browser-Soar)

Highly interactive tasks (HI-Soar)
Decision modeling (NTD-Soar)

Learning task-action mappings (TA-Soar)

34

Contributing Soar Major Example Implementation
Ideas Version Results Systems

4) () (

soars-1989| | TEE || oSonr
:Soar4- 1986: UTC (E{:‘;‘z \ [Eli(;fg:;]
:Soar3-1984: SZ?EE; R1-Soar
o0 (e | (] [
:Soarl - 1982: :\Vlejaflliﬁrestilo c; :Toy Tasks: : Xﬁl:iz :

35

Soar 5 Shortcomings

o Software rot
e Difficult to maintain and extend
* Code 1s > 10 years old

 Significant efficiency problems with big systems and

long runs
* Having impact on initial versions of Air-Soar

36

Soar 6 — 1992

« Significantly improve efficiency, portability, correctness
maintainability

37

Soar 6 Approach

e Portto C
« Rewrote from scratch by Bob Doorenbos

* Provide efficiency for large highly interactive systems.
« 8-10 times faster than Soar 5 for medium size tasks (1000 rules)

» 20-80 times faster for large tasks and long runs.
 Dispatcher-Soar learning > 100,000 chunks without significant

slowdown

38

Soar 6 Applications

* Cognitive Modeling, many with learning

Play Super Marios (HI-Soar)
Solve Electric/Magnetic Physics Problems (EFH-Soar)
Natural Language Processing (NL-Soar)

Medical Diagnosis using abduction (Red-Soar)
Air Traffic Controller (ATC)

e Learning Systems

Learning by Instruction (Instructo-Soar)
Learning from interaction with environment (IMPROYV)
Symbolic Category Learning (SCA-2)

* Performance Systems

Fly SGI flight simulator (Air-Soar)
First versions of military simulation agents (TacAir-Soar, RWA-Soar,
Debrief)

Teamwork (STEAM)
Training and Instruction (STEVE)

39

Contributing
Ideas

. Destructive
[Single State] [Oy

|

Chunking

Preferences] Subgoals
Weak (Production |

Methods __Systems

| Systems || Search Spaces

(Symbol] [Heuristic] [Problem)

&

Soar Major
Version Results

{ \ 4 High

\Soar6 - 1992) | Efficiency |

[1 External

\SoarS - 1989) | Tasks

Soar4 - 1986 UTC
(1 [General
Soar3 - 1984 . ched
i J earning

()

Soar2 - 1983

[Universal 1
Subgoaling |

N\ [

Soarl - 1982

. \
Universal

. J/

(Weak Method]

Example
Systems

Implementation

Air-Soar
Instructo-Soar]

|«

|

|

HI-Soar

| Hero-Soar |

(ET-Soar External

| NL-Soar RGIGERE
R1-Soar

[RI-Soar OPS5

| Dypar-Soar | Lisp

(] XAPS 2

l Toy Tasks I s |

40

Soar 6 Shortcomings

e No runtime environment in C like 1n Lisp

 Daifficult to integrate Soar with other applications

41

Soar 7 - 1996

 Make easier to:
e create runtime tools
e connect to external environments
 run multiple agents

 Integrated Soar with Tcl/Tk

 Two companies use Soar

 ERS: ExpLore Reasoning Systems
KB Agent

e Soar Technology, Inc.

42

Soar7 Applications

Final TacAir-Soar, RWA-Soar
« Attention modeling

Teamwork applications using STEAM:
« RWA-Soar, Robo-cup, Electric Elves (organization management and teamwork)

Learning multi-tasking (EPIC-Soar)

Modeling air-traffic controllers
* Working memory decay model
Vision-processing (Vision-Soar)
Language Generation: (LG-Soar & continued work on NL-Soar)

More games:

* Descent-Soar, Quake-Soar
« PACMAN

Mission rehearsal bots
e HTNs
* Emotion Modeling
e Social Interactions

Organization modeling (Country Chaos)

43

Contributing
Ideas

[Sl S te] [Destructive

Ve

\ U

Preferences]

Weak
Methods

Operators

|

Chunking

™

Subgoals

\ [

&

Systems

Production b

(Symbol |[Heuristi
| Systems

Search

c|(Problem |
Spaces

&

Soar Major
Version Results
(1 | Improved]

Soar7 - 1996

L Interfaces)

()

High
\Soar6 - 1992) | Efficiency |
r N External
\SoarS - 1989) | Tasks
Soar4 - 1986 UTC
- 1 [General
\Soar3 - 1984) Learning

()

Soar2 - 1983

[Universal 1
Subgoaling |

N\ [

Soarl - 1982

. J/

\
Universal

(Weak Method]

Example Implementation
Systems
[TacAir-Soar | TCL/Tk
| EPIC-Soar) | Wrapper |
Air-Soar i C]
Instructo-Soar) |)
[Air-Soar |
| Hero-Soar |
([ET-Soar External
| NL-Soar RGIGERS
R1-Soar
[RI-Soar OPS5
| Dypar-Soar | Lisp |
() XAPS2 |
l Toy Tasks |

44

Soar 7 Shortcomings

Race conditions between rules and across subgoals
Inconsistency in reasoning across subgoals possible
Learning could create rules that would never fire

Output could be inconsistent with selected operators

45

Soar 8 - 1999

* Fix problems with interactions with external environments

« Across goal consistency
» Goal dependency sets
 [terative instead of parallel processing of goals
* Non-contemporaneous chunks

* Change operator selection to be 1-supported
» Eliminate reconsider preference

* Change Decision Cycle

46

Processing Across Substates

e Problem:
« Rules can fire 1n substates even though impasse 1s about to be
resolved
* Run-away substate can generate results that are invalid

e Approach
» (Cascade rules from oldest to newest substate
« Remove substates 1f impasse 1s resolved
« Recompute match set after each substate processed

—_—
—_—

* Implications —
* Avoids firing rules that will be irrelevant .

 Avoids some race conditions 4

Soar’s Decision Cycle

Soar 7

Input lRule Firing) »| Decision
N R /Propose Operators\ [App ly Op eratoﬁ
oar o. (rules) (rules)
2 2| S - 2
s 8| & 3 =
5|5 5| & 5 O
& 1& 2| © 3 .
2 12 S| & = -
s1g gl g a2 8
»| Input | E E e Select Operator < < Output | _
- — \.

48

Soar 8 Applications

« External Interaction
* Play Quake (Quakebot)
e Computer game non-player characters (Haunt II)
* Adversaries for military simulations (MOUTBot)
« Unmanned Air Vehicle (UAV) control

« Social Interaction Agents

49

Contributing
Ideas

|

Goal

B dency] E)ecmon Cycl%

[Single State] [Desimeine]

Ve

\ U

Preferences]

Weak
Methods

Operators

Chunking

™

Subgoals

\ [

Production b

Systems

&

Ve

Symbol ||Heuristic|[Problem)
| Systems

Search

Spaces

&

Soar Major
Version Results
Soars - 1999 SILRTELS
L J (| Coherence |

Soar7 - 1996

(Improved]
| Interfaces |

()

High
\Soar6 = 1992) | Efficiency |
r 0 External
\SoarS - 1989) | Tasks
Soar4 - 1986 UTC
. 1 [General
Soar3 - 1984 L arnin
\) carning

()

Soar2 - 1983

[Universal 1
Subgoaling |

N\ [

()

Soarl - 1982

. J/

\
Universal

(Weak Method]

Example Implementation
Systems
(MoUTBOT | []
| QuakeBot) | SGIO)
[TacAir-Soar 1 TCL/Tk 1
| RWA-Soar)] | Wrapper |
Air-Soar [C 1
Instructo-Soar) |)
[Air-Soar 1
| Hero-Soar |
(ET-Soar External
| NL-Soar RGIGERE
R1-Soar
[RI-Soar OPS5
| Dypar-Soar | Lisp |
(] XAPS2
l Toy Tasks I s |

50

What’s Next?

Soar 8.5

* Bug fixes
* Numeric indifferent preferences

Soar 9

* Working memory activation

* New architectural learning mechanisms

» Reinforcement learning
* Episodic learning?

* Rule decay?

51

Biggest Surprises

» Lack of buy in Al to Soar’s best ideas
* Open decision making for operator selection

* Success of niche Al
* Specialized techniques for specific problems

« Difficulty of finding applications that require human-
level Al
» Military Simulations
* Computer Games

52

Where does Soar sit today?

* Best symbolic architecture for building complex,
knowledge-rich performance systems.

53

	Evolution of Soarbased on “The Evolution of the Soar Architecture” Mind Matters, 1992Laird and Rosenbloom
	Outline
	Research Methodology
	Principles
	Desired Behavioral Capabilities
	Pre-Soar
	Soar 1 – 1982Goals
	Soar 1: Approach
	Soar 1
	Contrast with Other Approaches
	Weak Methods in Soar 1
	Soar 1 Achievements
	Soar 1 Shortcomings
	Soar 2 – 1983
	Soar 2 Approach
	Soar 2: Selection Space
	Soar 2 Shortcomings
	Soar 3 – 1984
	Soar 3 Approach
	Soar 3: Chunking Example
	Soar 3 Results
	Soar 4 – 1986
	Soar 4 ResultsKnowledge-based Systems
	Unified Theories of Cognition
	Soar 4 Results: Unified Theory of Cognition (1987)
	Soar 4 Shortcomings
	Soar 5 – 1989
	Soar 5 Approach
	Soar 5 Results
	Soar 5 UTC Applications
	Soar 5 Shortcomings
	Soar 6 – 1992
	Soar 6 Approach
	Soar 6 Applications
	Soar 6 Shortcomings
	Soar 7 - 1996
	Soar7 Applications
	Soar 7 Shortcomings
	Soar 8 - 1999
	Processing Across Substates
	Soar’s Decision Cycle
	Soar 8 Applications
	What’s Next?
	Biggest Surprises
	Where does Soar sit today?

