
Evolution of Soar
based on “The Evolution of the Soar Architecture” Mind Matters, 1992

Laird and Rosenbloom

John E. Laird
University of Michigan

June 26, 2003
23rd Soar Workshop

2

Outline
• Revisit Soar versions 1-8
• Technical and research ideas
• Representative systems – knowledge

• Representative applications and research

3

Research Methodology

1. Pick basic principles to guide development
2. Pick desired behavioral capabilities
3. Make design decisions consistent with above
4. Build/modify architecture
5. Implement tasks
6. Evaluate performance

4

Principles
• Draw from “intelligence” in humans and machines
• Start with architecture

• The fixed mechanisms that support general intelligence

• Attempt to create a uniform, universal architecture
• Use task independent representations and processes.
• Architectural mechanisms shouldn’t constrain system to

specific approaches for all problems

• Minimal architectural mechanisms

5

Desired Behavioral Capabilities
• Interact with a complex world - limited uncertain sensing
• Respond quickly to changes in the world
• Use extensive knowledge
• Use methods appropriate for tasks
• Goal-driven
• Meta-level reasoning and planning
• Coordinate behavior and communicate with others
• Learn from experience
• Integrate above capabilities across tasks
• Behavior generated with low computational expense

6

Pre-Soar
• Logic Theorist (LT) (1955)

• First symbolic problem solver with heuristics

• GPS (1958)
• Means-Ends Analysis and Recursive Goals

• Problem Spaces (1965)
• Uniform Task Structure

• Production Systems (1967)
• Uniform, Incremental, Context-sensitive Knowledge

Representation

• Weak Methods (1969)
• Organization of General Control Knowledge

7

Soar 1 – 1982
Goals

• Develop an architecture that supports multiple methods
• Use different methods for different tasks
• Use different methods for different subtasks
• Methods determined by available knowledge

8

Soar 1: Approach
• Develop an AI architecture that supports problem spaces

• Explicit representation of goals, problem spaces, states, operators
• All tasks cast as decision making in a problem space
• All knowledge supports problem space functions

• Use a parallel production system for long-term memory
• Working memory contains current and proposed

• goals,
• problem spaces,
• states,
• operators.

• Productions encode problem space knowledge
• Propose object, vote on objects, apply operators.

• Decision procedure tallies votes for selecting objects

9

Soar 1
Production Memory Process

Conditions Actions Elaboration, Decision, Application Cycle
Conditions Actions

Conditions Actions

Conditions Actions

Working Memory ∑ ∑

Select
Operator

Apply
Operator

Compare
States

Select
States

Propose
Compare
Operators

Type: Slot Stock
Goal [G1] G2, G3
Problem Space [P2] P4
State [S13] S10, S11, S1
Operator [] O32, O33

Working memory is a set, not a graph
Special slot for selected goal, problem space, state, operator
Votes are tallied to select current object

10

Contrast with Other Approaches
• STRIPS – for each operator, single representation of

• operator preconditions and actions

• GPS – for each operator, single representation of
• operator preconditions, actions
• table of connections

• Soar
• Operators are first-class objects
• Independent knowledge for

• Proposal
• Selection
• Application

• Can be disjunctive, conditional

11

Weak Methods in Soar 1
• By adding rules about task, could change methods

• Blind search
• Avoid duplicate states
• Heuristic search – task specific heuristics
• Means-ends analysis
• Hill climbing
• Steepest ascent hill climbing
• Breadth-first search
• Depth-first search
• Best-first search

• Not a big switch where method is selected explicitly

12

Soar 1 Achievements
• Unified problem spaces and production systems
• Basis for Universal Weak Method

• Separate representation of control knowledge
• Decisions based on dynamic integration of knowledge

• Systems built: Variety of simple puzzles and toy tasks
• Users: 1
• Implemented in XAPS 2

• Rosenbloom’s eXperimental Activation Production System

13

Soar 1 Shortcomings
• No subgoals
• No meta-level reasoning
• Voting results may not reflect knowledge

• More votes ≠ more evidence, more knowledge
• Limited expressability of knowledge – no partial orders.

14

Symbol
Systems

Heuristic
Search

Problem
Spaces

Production
Systems

Weak
Methods

Contributing
Ideas

Universal
Weak Method

Major
Results

Xaps
Lisp

Implementation

Soar1 - 1982

Soar
Version

Toy Tasks

Example
Systems

15

Soar 2 – 1983

• Any goal principle
• System can generate any and all types of goals

• Universal subgoaling
• Single mechanism for creating all types of goals

• Automatic subgoaling
• All subgoals generated automatically

• Preference-based decision procedure

16

Soar 2 Approach
• Symbolic preference scheme replaces voting

• Acceptable, reject, better, worse

• Detect inability to make decisions automatically:
• Impasses: tie, conflict, no-change in decision

• Create subgoal automatically to resolve impasse
• Recursively use problem spaces in subgoal
• Subgoal parameters and results are determined dynamically by

problem solving

• Working memory becomes graph structure rooted in goals

17

Soar 2: Selection Space
• Meta-level reasoning with evaluation
• Basis of many weak methods
• Depth-first search, mini-max, alpha-beta, iterative

deepening, progressive deepening, …

C

A B

tie

Eval(move-b)

C

A

B

C

A B

Eval(move-c)

C

A B CA B

CA B C

A

B
move-c

18

Contributing
Ideas

Soar
Version

Major
Results

Example
Systems

Implementation

Universal
Subgoaling

R1-Soar
Dypar-Soar

OPS5
LispPreferences Subgoals Soar2 - 1983

Symbol
Systems

Heuristic
Search

Production
Systems

Universal
Weak Method

XAPS 2
Lisp

Weak
Methods

Soar1 - 1982 Toy Tasks

Problem
Spaces

19

Soar 2 Shortcomings
• No learning
• Must resolve same impasse multiple times during a task

20

Soar 3 – 1984
• How can learning be integrated with problem solving?

• Learn when knowledge is incomplete: impasses
• Learn when knowledge becomes available: results
• Connect situation where learning is needed to when it is available
• Knowledge transfer depends on similarity of situation

21

Soar 3 Approach
• Inspired by “chunking” as developed in XAPS.
• A rule is learned that summarizes processing in a subgoal.
• Conditions based on working memory elements tested by

productions fired in subgoals.
• Later restricted to just those tested on path to results.
• Also inspired by goal-regression learning – Mitchell, DeJong

• Actions are based on results of subgoal.
supergoal

WMEs
subgoal
WMEs

results:
supergoal

WMEs

22

Soar 3: Chunking Example

C

A B

tie

Eval(move-b)

C

A

B

C

A B

Eval(move-c)

C

A B CA B

CA B C

A

B
move-c move-b

Learn Chunk

Within Task Transfer: chunk learned in subgoal applies to avoid future search

Across Task Transfer: chunk learned in one problem transfers to another

23

Soar 3 Results
• General learning method integrated with problem solving.

• Learns incrementally and continually on all tasks.
• Learns from both success and failure.
• Learns a variety of types of knowledge:

• Selection knowledge, operator application, operator creation, state refinement,
problem formulation

• Automatically converts deep knowledge to shallow knowledge
• R1-Soar

• Users: 8

24

Contributing
Ideas

Soar
Version

Major
Results

Example
Systems

Implementation

General
Learning R1-SoarChunking Soar3 - 1984

Universal
Subgoaling

R1-Soar
Dypar-Soar

OPS5
LispPreferences Subgoals Soar2 - 1983

Symbol
Systems

Heuristic
Search

Production
Systems

Universal
Weak Method

XAPS 2
Lisp

Weak
Methods

Soar1 - 1982 Toy Tasks

Problem
Spaces

25

Soar 4 – 1986
• First version prepared for external release

• Manual published, ported to Common Lisp, first Soar Workshop

• Explosion in applications and users
• > 50 by 1988

• Explosion in types of learning and problem solving
• Newell proposes Unified Theory of Cognition

26

Soar 4 Results
Knowledge-based Systems

• Algorithm design (Designer-Soar, Cypress-Soar)
• Medical Diagnosis (NeoMycin-Soar, Red-Soar)
• Production Line Scheduling (Merl-Soar)
• Chemical Process Modeling
• Natural Language Understanding (NL-Soar)
• Intelligent Tutoring (ET-Soar)

27

Unified Theories of Cognition
Allen Newell, 1989:

“I mean a single set of mechanisms for all of cognitive behavior.”
• Problem solving, decision making, routine action
• Memory, learning, skill
• Perception, motor behavior
• Language
• Motivation, emotion
• Imagining, dreaming, daydreaming, …”

“Our ultimate goal is a unified theory of human cognition. This
will be expressed, I have maintained, as a theory of the
architecture of human cognition–that is, of the fixed (or slowly
varying) structure that forms the framework for the immediate
processes of cognitive performance and learning.”

28

Soar 4 Results:
Unified Theory of Cognition (1987)

• Immediate Reasoning Tasks
• Syllogisms
• Balance Beam
• Cryptarthmetic
• Towers of Hanoi
• Transcription Typing
• Instruction for simple tasks
• Verbal learning
• Series completion

29

Contributing
Ideas

Soar
Version

Major
Results

Example
Systems

Implementation

ET-Soar
NL-Soar

External
ReleaseUTCSoar4 - 1986

General
Learning R1-SoarChunking Soar3 - 1984

Universal
Subgoaling

R1-Soar
Dypar-Soar

OPS5
LispPreferences Subgoals Soar2 - 1983

Symbol
Systems

Heuristic
Search

Production
Systems

Universal
Weak Method

XAPS 2
Lisp

Weak
Methods

Soar1 - 1982 Toy Tasks

Problem
Spaces

30

Soar 4 Shortcomings
• Limited interaction with external environments
• Excessive copying of state structures during operator

application

31

Soar 5 – 1989
• Add interaction with external environments
• Improve efficiency by eliminating state copying

32

Soar 5 Approach
• Modify problem space computational model
• Only a single state per goal

• State changes through operator application or perception

• Operator productions destructively modify current state
• Retractable entailments: i-support
• Automatic classification of rules into entailments/destructive

• i-support vs. o-support

• Operators stay selected until terminated with a reconsider
preference: @

• Justifications built for results
• Not required in Soar 4 because everything o-supported

33

Soar 5 Results
• Integrates interaction, reaction, planning, learning
• Four level architecture

• Motor programs: innate – not subject to cognition
• Parallel Production System: Reflexes
• Operators: Deliberation
• Subgoals: Planning and Hierarchical Reasoning

• Used worldwide at over 15 sites, 100 researchers

34

Soar 5 UTC Applications
• Number conservation (Q-Soar)
• Concept learning (SCA)
• Visual Attention (NOVA)
• Sentence parsing (NL-Soar)
• Learning Physics (Dyna-Soar)
• Browsing (Browser-Soar)
• Highly interactive tasks (HI-Soar)
• Decision modeling (NTD-Soar)
• Learning task-action mappings (TA-Soar)

35

Contributing
Ideas

Soar
Version

Major
Results

Example
Systems

Implementation

HI-Soar
Hero-Soar

External
Tasks

Destructive
OperatorsSingle State Soar5 - 1989

ET-Soar
NL-Soar

External
ReleaseUTCSoar4 - 1986

General
Learning R1-SoarChunking Soar3 - 1984

Universal
Subgoaling

R1-Soar
Dypar-Soar

OPS5
LispPreferences Subgoals Soar2 - 1983

Symbol
Systems

Heuristic
Search

Production
Systems

Universal
Weak Method

XAPS 2
Lisp

Weak
Methods

Soar1 - 1982 Toy Tasks

Problem
Spaces

36

Soar 5 Shortcomings
• Software rot

• Difficult to maintain and extend
• Code is > 10 years old

• Significant efficiency problems with big systems and
long runs
• Having impact on initial versions of Air-Soar

37

Soar 6 – 1992
• Significantly improve efficiency, portability, correctness

maintainability

38

Soar 6 Approach
• Port to C

• Rewrote from scratch by Bob Doorenbos

• Provide efficiency for large highly interactive systems.
• 8-10 times faster than Soar 5 for medium size tasks (1000 rules)
• 20-80 times faster for large tasks and long runs.
• Dispatcher-Soar learning > 100,000 chunks without significant

slowdown

39

Soar 6 Applications
• Cognitive Modeling, many with learning

• Play Super Marios (HI-Soar)
• Solve Electric/Magnetic Physics Problems (EFH-Soar)
• Natural Language Processing (NL-Soar)
• Medical Diagnosis using abduction (Red-Soar)
• Air Traffic Controller (ATC)

• Learning Systems
• Learning by Instruction (Instructo-Soar)
• Learning from interaction with environment (IMPROV)
• Symbolic Category Learning (SCA-2)

• Performance Systems
• Fly SGI flight simulator (Air-Soar)
• First versions of military simulation agents (TacAir-Soar, RWA-Soar,

Debrief)
• Teamwork (STEAM)
• Training and Instruction (STEVE)

40

Contributing
Ideas

Soar
Version

Major
Results

Example
Systems

Implementation

Air-Soar
Instructo-Soar

High
EfficiencySoar6 - 1992 C

HI-Soar
Hero-Soar

External
Tasks

Destructive
OperatorsSingle State Soar5 - 1989

ET-Soar
NL-Soar

External
ReleaseUTCSoar4 - 1986

General
Learning R1-SoarChunking Soar3 - 1984

Universal
Subgoaling

R1-Soar
Dypar-Soar

OPS5
LispPreferences Subgoals Soar2 - 1983

Symbol
Systems

Heuristic
Search

Production
Systems

Universal
Weak Method

XAPS 2
Lisp

Weak
Methods

Soar1 - 1982 Toy Tasks

Problem
Spaces

41

Soar 6 Shortcomings
• No runtime environment in C like in Lisp
• Difficult to integrate Soar with other applications

42

Soar 7 - 1996
• Make easier to:

• create runtime tools
• connect to external environments
• run multiple agents

• Integrated Soar with Tcl/Tk

• Two companies use Soar
• ERS: ExpLore Reasoning Systems

• KB Agent
• Soar Technology, Inc.

43

Soar7 Applications
• Final TacAir-Soar, RWA-Soar

• Attention modeling
• Teamwork applications using STEAM:

• RWA-Soar, Robo-cup, Electric Elves (organization management and teamwork)
• Learning multi-tasking (EPIC-Soar)
• Modeling air-traffic controllers

• Working memory decay model
• Vision-processing (Vision-Soar)
• Language Generation: (LG-Soar & continued work on NL-Soar)
• More games:

• Descent-Soar, Quake-Soar
• PACMAN

• Mission rehearsal bots
• HTNs
• Emotion Modeling
• Social Interactions

• Organization modeling (Country Chaos)

44

Contributing
Ideas

Soar
Version

Major
Results

Example
Systems

Implementation

TacAir-Soar
EPIC-Soar

Improved
Interfaces

TCL/Tk
WrapperSoar7 - 1996

Air-Soar
Instructo-Soar

High
EfficiencySoar6 - 1992 C

Air-Soar
Hero-Soar

External
Tasks

Destructive
OperatorsSingle State Soar5 - 1989

ET-Soar
NL-Soar

External
ReleaseUTCSoar4 - 1986

General
Learning R1-SoarChunking Soar3 - 1984

Universal
Subgoaling

R1-Soar
Dypar-Soar

OPS5
LispPreferences Subgoals Soar2 - 1983

Symbol
Systems

Heuristic
Search

Production
Systems

Universal
Weak Method

XAPS 2
Lisp

Weak
Methods

Soar1 - 1982 Toy Tasks

Problem
Spaces

45

Soar 7 Shortcomings
• Race conditions between rules and across subgoals
• Inconsistency in reasoning across subgoals possible
• Learning could create rules that would never fire
• Output could be inconsistent with selected operators

46

Soar 8 - 1999
• Fix problems with interactions with external environments

• Across goal consistency
• Goal dependency sets
• Iterative instead of parallel processing of goals
• Non-contemporaneous chunks

• Change operator selection to be i-supported
• Eliminate reconsider preference

• Change Decision Cycle

47

Processing Across Substates
• Problem:

• Rules can fire in substates even though impasse is about to be
resolved

• Run-away substate can generate results that are invalid

• Approach
• Cascade rules from oldest to newest substate
• Remove substates if impasse is resolved
• Recompute match set after each substate processed

• Implications
• Avoids firing rules that will be irrelevant
• Avoids some race conditions

48

Soar’s Decision Cycle
Soar 7

Input Rule Firing Decision

Soar 8: Propose Operators
(rules)

Apply Operator
(rules)

Select Operator OutputInput Pr
oc

es
s I

np
ut

Pr
op

os
e

O
pe

ra
to

rs

C
om

pa
re

 O
pe

ra
to

rs

A
pp

ly
 O

pe
ra

to
r

C
le

an
 u

p
O

ut
pu

t

R
et

ra
ct

 O
pe

ra
to

rs

49

Soar 8 Applications
• External Interaction

• Play Quake (Quakebot)
• Computer game non-player characters (Haunt II)
• Adversaries for military simulations (MOUTBot)
• Unmanned Air Vehicle (UAV) control
• …

• Social Interaction Agents
• …

50

Contributing
Ideas

Soar
Version

Major
Results

Example
Systems

Implementation

MOUTBOT
QuakeBot

Goal
Dependency

Substate
CoherenceDecision Cycle Soar8 - 1999 SGIO

TacAir-Soar
RWA-Soar

Improved
Interfaces

TCL/Tk
WrapperSoar7 - 1996

Air-Soar
Instructo-Soar

High
EfficiencySoar6 - 1992 C

Air-Soar
Hero-Soar

External
Tasks

Destructive
OperatorsSingle State Soar5 - 1989

ET-Soar
NL-Soar

External
ReleaseUTCSoar4 - 1986

General
Learning R1-SoarChunking Soar3 - 1984

Universal
Subgoaling

R1-Soar
Dypar-Soar

OPS5
LispPreferences Subgoals Soar2 - 1983

Symbol
Systems

Heuristic
Search

Production
Systems

Universal
Weak Method

XAPS 2
Lisp

Weak
Methods

Soar1 - 1982 Toy Tasks

Problem
Spaces

51

What’s Next?
• Soar 8.5

• Bug fixes
• Numeric indifferent preferences

• Soar 9
• Working memory activation
• New architectural learning mechanisms

• Reinforcement learning
• Episodic learning?

• Rule decay?

52

Biggest Surprises
• Lack of buy in AI to Soar’s best ideas

• Open decision making for operator selection

• Success of niche AI
• Specialized techniques for specific problems

• Difficulty of finding applications that require human-
level AI
• Military Simulations
• Computer Games

53

Where does Soar sit today?
• Best symbolic architecture for building complex,

knowledge-rich performance systems.

	Evolution of Soarbased on “The Evolution of the Soar Architecture” Mind Matters, 1992Laird and Rosenbloom
	Outline
	Research Methodology
	Principles
	Desired Behavioral Capabilities
	Pre-Soar
	Soar 1 – 1982Goals
	Soar 1: Approach
	Soar 1
	Contrast with Other Approaches
	Weak Methods in Soar 1
	Soar 1 Achievements
	Soar 1 Shortcomings
	Soar 2 – 1983
	Soar 2 Approach
	Soar 2: Selection Space
	Soar 2 Shortcomings
	Soar 3 – 1984
	Soar 3 Approach
	Soar 3: Chunking Example
	Soar 3 Results
	Soar 4 – 1986
	Soar 4 ResultsKnowledge-based Systems
	Unified Theories of Cognition
	Soar 4 Results: Unified Theory of Cognition (1987)
	Soar 4 Shortcomings
	Soar 5 – 1989
	Soar 5 Approach
	Soar 5 Results
	Soar 5 UTC Applications
	Soar 5 Shortcomings
	Soar 6 – 1992
	Soar 6 Approach
	Soar 6 Applications
	Soar 6 Shortcomings
	Soar 7 - 1996
	Soar7 Applications
	Soar 7 Shortcomings
	Soar 8 - 1999
	Processing Across Substates
	Soar’s Decision Cycle
	Soar 8 Applications
	What’s Next?
	Biggest Surprises
	Where does Soar sit today?

