
Soar Tutorial
Building Intelligent Agents

Using Soar
John E. Laird

Historical Perspective
1960 1970 1980 1990 2000

Human Problem Solving
Goal-directed search
Rule-based systems

Newell & Simon

Historical Perspective
1960 1970 1980 1990 2000

Efficient rule-based systems

Expert Systems

Rule
Memory

Working

Memory

Historical Perspective

Soar
Multi-method problem solving
Knowledge-based, hierarchical
reasoning, search, meta-level
reasoning, and learning

“Inside the head” problems
R1-Soar: Computer Configuration

1960 1970 1980 1990 2000

Historical Perspective
1960 1970 1980 1990 2000

External environments
Extreme efficiency
Mobile robot control
Stick control of simulated plane

Model human behavior
Natural language
Human-computer interaction
Many forms of learning

Air-Soar Hero-Soar

Historical Perspective
1960 1970 1980 1990 2000

TacAir-Soar

Intelligent Forces for Training
WISSARD/IFOR (DARPA)
Fixed-wing aircraft (UM)
Rotary-wing aircraft (USC/ISI)
STOW-E
STOW-97 – 700 sorties, 100 in air

E-2C

GCC

Target 1

FACWanda

original flight
actual flight path

Cougar

TAD
TACC

F/A-18’s
1

2

3

4

5

MiG-23’s

radio

Elmer

Jud

6

Historical Perspective
1960 1970 1980 1990 2000

Soar Quakebot Haunt 2

Soar Technology, Inc.
Develop and deploy IFORs
More capabilities, development tools &
runtime support

Computer Game AIs

Desired Behavioral Capabilities
• Interact with a complex world - limited uncertain sensing
• Respond quickly to changes in the world
• Use extensive knowledge
• Use methods appropriate for tasks
• Goal-driven
• Meta-level reasoning and planning
• Generate human-like behavior
• Coordinate behavior and communicate with others
• Learn from experience
• Integrate above capabilities across tasks
• Behavior generated with low computational expense

Water Jug Problem
You are given two empty jugs.
One holds five gallons of water and the other holds three gallons.
There is a well that has unlimited water that you can use to
completely fill the jugs.
You can also empty a jug or pour water from one jug to another.
There are no marks for intermediate levels on the jugs.
The goal is to fill the three-gallon jug with one gallon of water.

Operators and States
• Operators:

• Fill a jug from the well.
• Empty a jug into the well.
• Pour water from a jug to a jug.

• States
• Jug-a

• Volume: 5 gallons
• Contents: X gallons
• Empty: Y gallons

• Jug-b
• Volume: 3 gallons
• Contents: M gallons
• Empty: N gallons

Problem Solving
• Elaborate state:

• Entailments of current situation
• How much space available in jug?

• Select an operator
• Propose candidate operators

• Usually propose only if can apply
• If a jug has water in it, then propose empty for that jug.

• Compare operators:
• Where heuristics can be used to create preferences
• Avoid emptying a jug after filling it.

• Select current operator
• Done by the architecture based on preferences created above

• Apply an operator
• Change state to reflect operator actions
• If emptying a jug, then the contents of the jug are 0.

• Continually checking to see if achieved goal
• If the three gallon jug has one gallon, then success is achieved.

• Must create an initial state with the starting conditions: us initialization operator
• Jug-a: holds 0
• Jug-b: holds 0

Soar 101
Internal Problem Solving

Decision
Procedure

Propose
Operator

Compare
Operators

Apply
Operator

Select
Operator

Propose
Operator

Compare
Operators

Select
Operator

Apply
Operator

Elaborate
State

Elaborate
State

Production
Memory

If jug <j> empty >
0,
-->
propose operator
to fill jug <j>

If selected operator
fills jug <j>
-->
<j> ^contents gets
<j> ^volume

If operator <o>
empties a jug
-->
operator <o> <

If jug <j> has
content <c>,
volume <v>,
-->
^empty <v> - <c>

If no jugs,
-->
propose operator
initialize state

If selected operator is
initialize state
-->
<ja> ^contents 0 ^volume 5
<jb> ^contents 0 ^volume 3

Working
Memory

j1 j2

Operator: initialize state

j1 ^volume 5 ^contents 0

j2 ^volume 3 ^contents 0

Operator: fill j1

^empty 5

^empty 3

^empty 0
j1 ^volume 5 ^contents 5 Persistent – o-support

Persistent – o-support
Not-persistent – i-support

Not-persistent – i-support

Operator proposal: fill j1, fill j2Operator proposal: fill j1

Rule-Based Systems Structure

Rule Memory

Working Memory

Program

Procedural
Knowledge

Long-term
Knowledge

Data

Declarative
Knowledge

Short-term
Knowledge

Conflict
Resolution

Match

Act

Soar Syntax
Hello World Rule

If I exist,
then write “Hello World” and halt.

sp {hello-world
(state <s> ^type state)

-->
(write “Hello World”)
(halt)}

Hello World Operator

Testing selected
operator

sp {propose*hello-world
(state <s> ^type state)

-->
(<s> ^operator <o> +)
(<o> ^name hello-world)}

Propose*hello-world:
If I exist, propose the hello-world operator.

Apply*hello-world:
If the hello-world operator is selected, write “Hello World”
and halt.

Creating acceptable
preference for
operator

sp {apply*hello-world
(state <s> ^operator <o>)
(<o> ^name hello-world)

-->
(write |Hello World|)
(halt)}

Initial Working Memory

^type

^io

superstate

state

nil

^input-link

^output-link

S1 I1

I2

I3

S1 ^superstate nil
S1 ^io I1
S1 ^type state

I1 ^output-link I2
I1 ^input-link I3

(S1 ^io I1 ^superstate nil ^type state)
(I1 ^input-link I3 ^output-link I2)

Working Memory

B

(s1 ^block b1 ^block b2 ^table t1)
(b1 ^color blue ^name A ^ontop b2 ^size 1

^type block ^weight 14)
(b2 ^color yellow ^name B ^ontop t1 ^size 1

^type block ^under b1 ^weight 14)
(t1 ^color gray ^shape square

^type table ^under b2)

A

Water Jug State Structure
• Jug-a

• Volume: 5 gallons
• Contents: x gallons
• Empty: y gallons

• Jug-b
• Volume: 3 gallons
• Contents: m gallons
• Empty: n gallons

(<s> ^5-gallon-jug-holds 0
^3-gallon-jug-holds 0)

(<s> ^jug <j1>
^jug <j2>)

(<j1> ^volume 5
^contents 0
^empty 0)

(<j2> ^volume 3
^contents 0
^empty 0)

multi-valued
attribute

Water Jug Operators
• Initialize
• Fill a jug from the well
• Empty a jug into the well
• Pour water from a jug to a jug

• For every operator, must define at least two rules:
• Proposal
• Application

• Can also create selection rules, but not always necessary

Initialize
• Proposal

If there are no jugs defined,

then propose the initialize water-jug operator.

• Application
If the initialize water-jug operator is selected,
then create an empty 5 gallon jug and an empty 3 gallon jug.

sp {propose*initialize-water-jug
(state <s> ^type state

-^jug <j>)
-->
(<s> ^operator <o> +)
(<o> ^name initialize)}

sp {apply*initialize-water-jug
(state <s> ^operator <o>)
(<o> ^name initialize)
-->
(<s> ^jug <j1>

^jug <j2>)
(<j1> ^volume 5

^contents 0)
(<j2> ^volume 3

^contents 0)}

Test that no jugs exist

Fill Jug
• Proposal

If there is a jug that is not full, then propose the fill operator.

• Application
If the fill operator is selected for a jug,
then change the contents of that jug to its volume.

sp {propose*fill-water-jug
(state <s> ^jug <j>)
(<j> ^free > 0)
-->
(<s> ^operator <o> +)
(<o> ^name fill

^jug <j>)}

sp {apply*fill-water-jug
(state <s> ^operator <o>)
(<o> ^name fill

^jug <j>)
(<j> ^volume <v>

^contents <c>)
-->
(<j> ^contents <v>

^contents <c> -)}

Only match if
value > 0

Cause WME to
be removed

Instantiations
sp {propose*fill-water-jug

(state <s> ^jug <j>)
(<j> ^free > 0)
-->
(<s> ^operator <o> + =)
(<o> ^name fill

^jug <j>)}

= means indifferent
(a random selection will be made)

For each set of working memory elements that successfully match the rule, an instantiation is created.
(s1 ^jug j1) (s1 ^jug j2)
(j1 ^free 5) (j2 ^free 3)

Both instantiations fire, creating two new operators and preferences:
Working Memory Elements:
(s1 ^operator o1 +) (s1 ^operator o2 +)
(o1 ^name fill) (o2 ^name fill)
(o1 ^jug j1) (o2 ^jug j2)
Preferences:
(s1 ^operator o1 +) (s1 ^operator o2 +)
(s1 ^operator o1 =) (s1 ^operator o2 =)

The decision procedure will pick only one (randomly because they are indifferent).

Elaboration of ^free
If a jug has volume v and contents c, then it has free v – c.

^free is instantiation-supported = i-support

When this specific match of the rule retracts, the working memory
element is retracted.

The rule may match new values and produce a new working
memory element.

sp {elaborate*water-jug*free
(state <s> ^jug <j>)
(<j> ^volume <v>

^contents <c>)
-->
(<j> ^free (- <v> <c>))}

Subtraction of <c> from <v>

Instantiations
sp {elaborate*water-jug*free

(state <s> ^jug <j>)
(<j> ^volume <v>

^contents <c>)
-->
(<j> ^free (- <v> <c>))}

For each set of working memory elements that successfully match the rule, an
instantiation is created.

(s1 ^jug j1) (s1 ^jug j2)
(j1 ^volume 5) (j2 ^volume 3)
(j1 ^contents 0) (j2 ^contents 0)

Both instantiations fire in parallel, creating two new working memory elements:
New Working Memory Elements:
(j1 ^free 5) (j2 ^free 3)

If one of the matched working memory elements in an instantiation in removed from
working memory, the WME it created is removed.

Empty Jug
• Proposal

If there is a jug that is not empty,
then propose the empty operator.

• Application
If the empty operator is selected for a jug,
then change the contents of that jug to 0.

sp {apply*empty-water-jug
(state <s> ^operator <o>)
(<o> ^name empty

^jug <j>)
(<j> ^contents <c>)
-->
(<j> ^contents 0

^contents <c> -)}

sp {propose*empty-water-jug
(state <s> ^jug <j>)
(<j> ^contents <> 0)
-->
(<s> ^operator <o> + =)
(<o> ^name empty

^jug <j>)}

Pour Proposal
• Proposal

If there is a jug that is not empty, and the other jug is not full
then propose the pour operator.

sp {propose*pour-water-jug
(state <s> ^jug <j1>

^jug {<> <j1> <j2>})
(<j1> ^contents > 0)
(<j2> ^free > 0)
-->
(<s> ^operator <o> + =)
(<o> ^name pour

^jug <j1>
^into <j2>)}

Pour: two implementations
• If the source jug holds less than or equal to the jug

being filled
• If the source jug holds more than the jug being filled

Pour Apply Case 1
If the pour operator is selected, and

the contents of the jug being poured from are less than or equal to the free
amount of the into jug,

then set the contents of the source jug to 0;
set the contents of the into jug to the sum of the two jugs.

sp {apply*pour*not-empty-source
(state <s> ^operator <o>)
(<o> ^name pour

^jug <i>
^into <j>)

(<i> ^contents { <icon> <= <jfree> })
(<j> ^contents <jcon>

^free <jfree>)
-->
(<i> ^contents 0

<icon> -)
(<j> ^contents (+ <jcon> <icon>)

<jcon> -)}

Pour Apply Case 2
If the pour operator is selected, and

the contents of the jug being poured from are greater than
the free amount of the into jug,

then set the contents of the source jug to its original contents minus
the free of the destination jug, and
set the contents of the into jug to its volume.

sp {apply*pour*empty-source
(state <s> ^operator <o>)
(<o> ^name pour

^jug <i>
^into <j>)

(<i> ^contents { <icon> > <jfree> })
(<j> ^volume <jvol>

^contents <jcon>
^free <jfree>)

-->
(<i> ^contents (- <icon> <jfree>)

<icon> -)
(<j> ^contents <jvol>

<jcon> -)}

Goal Detection
If there is a jug with volume three and contents one,
then write that the problem has been solved and halt.

sp {waterjug*detect*goal*achieved
(state <s> ^name waterjug

^jug <j>)
(<j> ^volume 3

^contents 1)
-->

(write (crlf) |The problem has been solved.|)
(halt)}

Waterjug Problem Space

Fill
Empty
5 to 3
3 to 55,0 0,3

5,3

0,0

2,3 3,0

2,0 3,3

5,10,2

5,2 0,1

4,3 1,0

4,0 1,3

Eaters

Soar 101- Eaters Style

Propose
Operator

Compare
Operators

Apply
Operator OutputInput Select

Operator
Input Propose

Operator
Compare
Operators

Select
Operator

Apply
Operator Output

Production
Memory

If cell in direction <d>
is not a wall,
-->
propose operator
move <d>

If operator <o1> will move to a
bonus food and operator <o2>
will move to a normal food,
-->
operator <o1> > <o2>

If an operator is
selected to move <d>
-->
create output
move-direction <d>

If operator <o1> will move to a
empty cell
-->
operator <o1> <

Working
Memory

East

South
North

North > East
South > East

North = South

North > East
South <

move-
direction

North

Move North
Propose*move-north:
If I exist, propose the move-north operator.

Apply*move-north:
If the move-north operator is selected, create the command to
move-north on the output-link.

sp {apply*move-north
(state <s> ^operator <o>

^io <io>)
(<io> ^output-link)
(<o> ^name move-north)

-->
(^move <move>)
(<move> ^direction north)}

sp {propose*move-north
(state <s> ^type state)

-->
(<s> ^operator <o> +)
(<o> ^name move-north)}

The move command moves the eater one position in that direction

Short Cut
sp {apply*move-north

(state <s> ^operator <o>
^io <io>)

(<io> ^output-link <out>)
(<o> ^name move-north)

-->
(<out> ^move <move>)
(<move> ^direction north)}

sp {apply*move-north
(state <s> ^operator.name move-north

^io.output-link <out>)
-->

(<out> ^move.direction north)}

Operator Selection
• Current operators only changes when decision changes.
• Reasons for new decision:

• proposal instantiation no longer matches and retracts proposal
• other operators dominate selection through preferences

Propose Operators
(rules)

Apply Operator
(rules)

Select OperatorInput Output

Problem 1 with Move-North
• Operator is selected only once.

• When selected, moves Eater only one step

• Operator needs to retracts after it has applied so can be
reselected.
• Will then generate new action.

• Need to test something that changes when operator
applies

Improved Move-North
sp {propose*move -north

(state <s> ^io.input -link.eater <e>)
(<e> ^x <x> ^y <y>)

-->
(<s> ^operator <o> +)
(<o> ^name move-north)}

Persistence
• Actions of operator application rules persists indefinitely

• Otherwise actions would retract as soon as operator isn’t selected
• Operators perform non-monotonic changes to state
• Does rule test a selected operator and modify the state?

• Actions of non-operator application rules retract when rule
no longer matches
• No longer relevant to current situation
• Operator proposals and state elaboration
• Rule doesn’t test operator and modify state.

Problem 2 with Move-North
• Action command on output-link is not removed
• It persists on the state after the operator is no longer

selected
• Need to remove old command from output-link
• Need to detect when action is complete.

• ^io.output-link.move.status complete

Expanded Soar Cycle

Propose Operators
(i-supported)

Apply Operator
(o-support)

Select Operator OutputInput

Eaters

Extended Move-North

sp {apply*move-north*remove-move
(state <s> ^operator.name move-north

^io.output-link <out>)
(<out> ^move <move>)
(<move> ^status complete)

-->
(<out> ^move <move> -)}

Move
Propose*move*normalfood
If there is normalfood in an adjacent cell,
propose move in the direction of that cell
and indicate that this operator can be selected randomly.
#
Propose*move*bonusfood
If there is bonusfood in an adjacent cell,
propose move in the direction of that cell
and indicate that this operator can be selected randomly.
#
Apply*move
If the move operator for a direction is selected,
generate an output command to move in that direction.
#
Apply*move*remove-move:
If the move operator is selected,
and there is a completed move command on the output link,
then remove that command.

my-location

input-link

east easteasteast

easteasteast east

east easteast east

east easteasteast

east easteasteast

west west west west

west west west west

west west west west

west west west west

west west west west

north north northnorthnorth

north

north north northnorthnorth

north north northnorth

north north northnorthnorth

south south south south south

south south south south south

south south south south south

south south south south south

eaterwall empty bonusfood normalfood

content

wall

wall

wall

wall

empty

empty

normalfood

normalfood normalfood

normalfood

normalfood

normalfood

normalfood

normalfood

normalfood

normalfood

Cell for eater’s current location Neighboring cells

bonusfood

bonusfood

bonusfood

bonusfood

Move-to-food
sp {propose*move

(state <s> ^io <io>)
(<io> ^input-link <input-link>)
(<input-link> ^my-location <my-loc>)
(<my-loc> ^<direction> <cell>)
(<cell> ^content normalfood)

-->
(<s> ^operator <o> +)
(<s> ^operator <o> =)
(<o> ^name move

^direction <direction>)}

sp {propose*move*normalfood
(state <s> ^io.input-link.my-location.<dir>.content normalfood)

-->
(<s> ^operator <o> + =)
(<o> ^name move

^direction <dir>)}

Move-to-food apply

sp {apply*move
(state <s> ^io.output-link

^operator <o>)
(<o> ^name move

^direction <dir>)
-->

(^move.direction <dir>)}

sp {apply*move*remove-move
(state <s> ^io.output-link

^operator.name move)
(^move <move>)
(<move> ^status complete)

-->
(^move <move> -)}

Short Cut: << >>

sp {propose*move-to-food
(state <s> ^io.input-link.my-location.<dir>.content

<< normalfood bonusfood >>)
-->

(<s> ^operator <o> + =)
(<o> ^name move

^direction <dir>)}

sp {monitor*move-to-food
(state <s> ^operator <o>)
(<o> ^name move

^direction <direction>)
-->

(write |Direction: | <direction>)}

General Move Operator

Propose*move:
If there is normalfood, bonusfood, eater, or empty in an adjacent cell,
propose move in the direction of that cell, with the cell’s content,
and indicate that this operator can be selected randomly.

sp {propose*move*1a
(state <s> ^io.input-link.my-location.<dir>.content

{ <content> << empty normalfood bonusfood eater >> })
-->

(<s> ^operator <o> + =)
(<o> ^name move

^direction <dir>
^content <content>)}

General Move
sp {propose*move

(state <s> ^io.input-link.my-location.<dir>.content
{ <content> <> wall })

-->
(<s> ^operator <o> + =)
(<o> ^name move

^direction <dir>
^content <content>)}

sp {select*move*normalfood-better-than-empty-eater
(state <s> ^operator <o1> +

^operator <o2> +)
(<o1> ^name move

^content normalfood)
(<o2> ^name move

^content << empty eater >>)
-->

(<s> ^operator <o1> > <o2>)}

More Move Selection
sp {select*move*avoid-empty-eater

(state <s> ^operator <o1> +)
(<o1> ^name move

^content << empty eater >>)
-->

(<s> ^operator <o1> <)}

sp {select*move*prefer*bonusfood
(state <s> ^operator <o1> +)
(<o1> ^name move

^content bonusfood
-->

(<s> ^operator <o1> >)}

Summary of Preferences

Acceptable: <o1> +

Reject: <o1> -

Better: <o1> > <o2>

Worse: <o1> < <o1>

Best: <o1> >

Worst: <o1> <

Indifferent: <o1> = <o2>

Indifferent: <o1> =

Complete Soar Cycle

Select OperatorPr
oc

es
s I

np
ut

Pr
op

os
e

O
pe

ra
to

rs

C
om

pa
re

 O
pe

ra
to

rs

A
pp

ly
 O

pe
ra

to
r

C
le

an
 u

p
O

ut
pu

t

R
et

ra
ct

 O
pe

ra
to

rs

Apply Operator
(rules)

Propose Operators
(rules)

Input Output

Record Last-Direction

sp {apply*move*create*last-direction
(state <s> ^operator <o>)
(<o> ^name move

^direction <direction>)
-->

(<s> ^last-direction <direction>)}

sp {apply*move*remove*last-direction
(state <s> ^operator <o>

^last-direction <direction>)
(<o> ^direction <> <direction>

^name move)
-->

(<s> ^last-direction <direction> -)}

Precompute Opposites

sp {initialize*state*directions
(state <ss> ^type state)
-->
(<ss> ^directions <n> <e> <s> <w>)
(<n> ^value north ^opposite south)
(<e> ^value east ^opposite west)
(<s> ^value south ^opposite north)
(<w> ^value west ^opposite east)}

Don’t propose or reject last move
sp {propose*move*no-backward

(state <s> ^io.input-link.my-location.<dir>.content <> wall
^directions <d>
-^last-direction <o-dir>)

(<d> ^value <dir>
^opposite <o-dir>)

-->
(<s> ^operator <o> +, =)
(<o> ^name move

^direction <dir>)}

sp {select*move*reject*backward
(state <s> ^operator <o> +

^directions <d>
^last-direction <dir>)

(<d> ^value <dir>
^opposite <o-dir>)

(<o> ^name move
^direction <o-dir>)

-->
(<s> ^operator <o> -)}

Jump

sp {propose*jump
(state <s> ^io.input-link.my

<> wall)
-->

(<s> ^operator <o> + =)
(<o> ^name jump

^direction <dir>)}

-location.<dir>.<dir>.content

Jump/Move Selection

sp {init*elaborate*name-content-value
(state <s> ^type state)

-->
(<s> ^name-content-value <c1> <c2> <c3> <c4>

<c5> <c6> <c7> <c8>)
(<c1> ^name move ^content empty ^value 0)
(<c2> ^name move ^content eater ^value 0)
(<c3> ^name move ^content normalfood ^value 5)
(<c4> ^name move ^content bonusfood ^value 10)
(<c5> ^name jump ^content empty ^value -5)
(<c6> ^name jump ^content eater ^value -5)
(<c7> ^name jump ^content normalfood ^value 0)
(<c8> ^name jump ^content bonusfood ^value 5)}

Jump/Move Selection
sp {elaborate*operator*value

(state <s> ^operator <o> +
^name-content-value <ccv>)

(<o> ^name <name> ^content <content>)
(<ccv> ^name <name> ^content <content> ^value <value>)

-->
(<o> ^value <value>)}

sp {select*compare*best*value
(state <s> ^operator <o1> +

^operator <o2> +)
(<o1> ^value <v>)
(<o2> ^value < <v>)

-->
(<s> ^operator <o1> > <o2>)}

Soar Tutorial Part II

Subgoaling with TankSoar

New Environment: TankSoar

Red Tank’s
Shield

Borders
(stone)

Walls
(trees)

Health
charger

Missile
pack

Blue tank
(Ouch!)

Energy
charger

Green
tank’s radar

TankSoar Output
• Eaters

• ^move.direction north/south/east/west
• ^jump.direction north/south/east/west

• TankSoar
• ^move.direction: left/right/forward/backward
• ^rotate.direction: left/right
• ^fire.weapon missile
• ^radar.switch on/off
• ^radar-power.setting 1-14
• ^shields.switch on/off

TankSoar Input

• Eaters
• ^my-location.<dir>.content

• TankSoar
• ^blocked – ^incoming
• ^radar – ^rwaves
• ^smell – ^sound
• ^health – ^energy
• ^radar-setting – ^shield-status

Exercise #1: Drive a Tank (10 minutes)

1. Create a human-controlled tank
• Hold the Ctrl key and click on an open spot on the map.

2. Experiment with the buttons “Manual Controls” window.
3. Find the “Current Tank’s Status” window.

• Verify that you understand everything in it.

4. Have your partner create an opponent tank
• Take turns making moves by clicking the tank in the map window and

then selecting the move in the “Manual Controls” window

Game Dynamics
• Health

• Starts at 1000. Death at zero.
• Drive into wall/border: -100
• Missile hits tank: -400
• Healthcharger: +150/turn

• Missiles
• Starts at 15
• Firing: -1
• Missile pack: +7
• Missiles travel 1.3 times the speed

of a tank

• Energy
• Starts at 1000.
• Missile hits shield: -250
• Shields: -20/turn
• Radar: -1-14/turn
• Energycharger: +250/turn

• When energy reaches zero
• Shields/radar no longer function
• Smell, blocked, incoming, rwaves

still work

Game Dynamics #2
• Tanks can run until output is generated.
• Instant death if hit while on a charger.
• Killed tanks resurrect in new, random location

(unlimited lives)
• Scoring:

• Hits: +2 points – Being Hit: -1 point
• Kills: +3 points – Being killed: -2 points

• Winner: First tank with 50 points.

Exercise #2: Wandering Tank

1. Copy the default agent
2. Paste in the general apply/remove rules from your

Eaters agent
3. Create a Soar tank with three operators:

• Move, Turn and Radar-Off

(Details on next 2 slides)

General apply/remove rules

sp {apply*operator*create-action-command
(state <s> ^operator.actions.<att> <val>

^io.output-link <out>)
-->

(<out> ^<att> <val>)}

sp {apply*operator*remove-command
(state <s> ^operator.actions

^io.output-link <out>)
(<out> ^<att> <value>)
(<value> ^status complete)

-->
(<out> ^<att> <value> -)}

Wander Operators

• Move
• move forward if not blocked

• Turn
• If front is blocked, rotate to clear direction, turn radar on the radar

with power 13
• If blocked on the front, left and right (dead-end) then turn left.

• Elaboration: Radar-off
• If the radar is on and no objects are visible then turn the radar off
• Piggy back on move operator

Move Operator

• Proposal:
• If the tank is not blocked in the forward direction, propose move

forward operator.

sp {propose*move
(state <s> ^io.input-link.blocked.forward no)

-->
(<s> ^operator <o> +)
(<o> ^name move

^actions.move.direction forward)}

• Default rules will copy action to output-link
• Will terminate next cycle because blocked changes after a

move

Turn Operator

• Proposal:
• If the tank is blocked in the forward direction, propose rotate and radar

operator.

sp {propose*turn
(state <s> ^io.input-link.blocked.forward yes)

-->
(<s> ^operator <o> + =)
(<o> ^name turn

^actions <a>)
(<a> ^rotate.direction left

^radar.switch on
^radar-power.setting 13)}

• Should turn only toward open direction

Better Turn Operator

sp {propose*turn
(state <s> ^io.input-link.blocked)
(^forward yes

^ { << left right >> <direction> } no)
-->

(<s> ^operator <o> + =)
(<o> ^name turn

^actions <a>)
(<a> ^rotate.direction <direction>

^radar.switch on
^radar-power.setting 13)}

Turn Around

sp {propose*turn*around

(state <s> ^io.input-link.blocked)

(^forward yes ^left yes ^right yes)

-->

(<s> ^operator <o> +)

(<o> ^name turn

^actions.rotate.direction left)}

Radar-off

• Do in parallel with move if radar is on and nothing on
radar.

sp {wander*elaborate*move*radar-off
(state <s> ^operator <o> +

^io.input-link <il>)
(<o> ^name move)
(<il> ^radar-status on

-^radar.<< energy health missiles tank >>)
-->

(<o> ^actions.radar.switch off)}

What Next?

SUBGOALS in Soar

Impasses and Subgoals
• Problem:

• What to do when inconsistent of incomplete knowledge?

• Approach:
• Detect impasses in decision procedure
• Create substate with augmentations that define impasse

• Superstate
• Impasse – no-change, tie, conflict, …
• Item – tied or conflicted operators
• …

• Impasse resolved when decision can be made

• Implications:
• Substate is really meta-state that allows system to reflect
• All basic problem solving functions open to reflection (and learning)

• Operator creation, selection, application, state elaboration
• Substate is where knowledge to resolve impasse can be found

superstate
item

impasse

Substate Results
• Problem

• What are the results of substates/subgoals?
• Don’t want to have programmer determine via special syntax
• Results should be side-effect of processing

• Approach
• Results determined by structure of working memory
• Structure is maintained based on connectivity to state stack
• Result is

• Structure connected to superstate but created by rule that tests substate structure
• Structure created in substate that becomes connected to superstate

• Implications
• Results do not necessarily resolve impasses
• One result can cause large substate structure to become result
• Superstate cannot be augmented with substate – substate would be result

Result Examples
superstate

substate

superstate

substate

new result

tested by rule

superstate
post-impasse

superstate

substate new results

Persistence of Results
• Problem:

• What should be the persistence of results?
• Based on persistence of structure in subgoal?
• Could have different persistence before and after chunking

• Operator in subgoal could create elaboration of superstate
• How maintain i-support after substate removed?

• Approach:
• Build justification that captures processing
• Analyze justification

• Elaborate, propose, select, apply
• Assign o/i-support

• Maintain justification for i-support until result removed

Justification Example

substate

superstate

superstate

substate

superstate

substate

result

superstate

substate

Example Substates:
State no-change

• Reason for impasse
• State is not appropriately elaborated
• Operator not proposed

• Types of problem solving in substate
• Analyze superstate structure to find some missing patterns

that will stimulate existing operator proposal
• Analyze superstate to determine which operators are legal to

apply.
• Generate operators.

• Results
• State elaborations
• Operator proposals

?

Example Substates:
Operator Tie

• Reason for impasse
• Insufficient preferences

• Types of problem solving in substate
• Analyze superstate structure and proposed operators to

generate additional preferences
• Selection problem space
• Meta-reasoning

• Results
• Operator preferences
• State elaborations

?

Example Substates:
Operator Conflict

• Reason for impasse
• Conflicting preferences

• Types of problem solving in substate
• Analyze superstate structure and proposed operators to

generate additional preferences
• Selection problem space
• Meta-reasoning

• Results
• Operator reject preferences

• Non-standard
• Elaborate state

?

Example Substates:
Operator No-change

• Reason for impasse
• Insufficient knowledge to apply operator

• Types of problem solving in substate
• Apply operator bit by bit
• Task decomposition

• Results
• O-supported state changes

• Non-standard
• Select another operator

Soar 102:
Dynamic Task Decomposition

Employ
Weapons Search Execute

TacticScram

Get Steering
Circle

Sort
Group

Launch
Missile

Lock IR Fire-Missile Wait-for
Missile-Clear

If intercepting an enemy and
the enemy is within range
ROE are met then
propose employ-weapons

Employ
Weapons

If employing-weapons and
missile has been selected and
the enemy is in the steering
circle and LAR has been
achieved,
then propose launch-missile Launch

Missile
If launching a missile and
it is an IR missile and
there is currently no IR lock
then propose lock-IRLock IR

Execute
Mission

Fly-route Ground
AttackFly-Wing Intercept

If instructed to intercept an
enemy then
propose intercept

Intercept

Achieve
Proximity

Get Missile
LAR

Select
Missile

Lock Radar

>250 goals, >600 operators, >8000 rules

TankSoar Hierarchy
The Soar Tutorial’s full Hierarchy for TankSoar:

Soar 103: Subgoals

Propose
Operator

Compare
Operators

Apply
Operator OutputInput Select

OperatorInput Propose
Operator

Compare
Operators

Select
Operator

Apply
Operator Output

Move

Wander

Turn

If enemy not
sensed, then wander

Soar 103: Subgoals

Propose
Operator

Compare
Operators

Apply
Operator OutputInput Select

Operator

Attack

Shoot

If enemy is sensed,
then attack

Exercise #3
Let’s start simple…
1. Elaborate the top state with the name

‘tanksoar’.
2. Wander: If you can’t see a tank on the

radar, propose wander
3. Use VisualSoar to drag and drop the

existing move and turn operators as sub-
operators of Wander.

4. Modify the move and turn proposal rules
to fire only if the current state is named
‘wander’.

Default Rules to Support Subgoals
• Copy down the ^io pointer from ^superstate.io and

^top-state pointer to every substate.
• Name each substate with superoperator name.

• NOTE: This rule is provided by default by VisualSoar

Elaborations

sp {elaborate*task*tanksoar
(state <s> ^superstate nil)

-->
(<s> ^name tanksoar)}

sp {elaborate*state*superstateio
(state <s> ^superstate.io <io>)

-->
(<s> ^io <io>)}

Propose Wander

sp {propose*wander
(state <s> ^name tanksoar

^io.input-link <io>)
(<io> ^sound silent

-^radar.tank
-^incoming.<dir> yes)

-->
(<s> ^operator <o> +)
(<o> ^name wander)

}

Revised Move

sp {wander*propose*move

(state <s> ^name wander

^io.input-link.blocked.forward no)

-->

(<s> ^operator <o> + =)

(<o> ^name move

^actions.move.direction forward)}

Attack!
Add the attack operator:
1. Propose an Attack operator when

you can see a tank on the radar
2. Create two operators for the attack

subgoal

– Fire: If I see a tank on radar ahead of me in the center, fire a
missile.

– Turn: If there is a tank next to me, turn and fire.

Fire Missile
sp {attack*propose*fire-missile

(state <s> ^name attack
^io.input-link <io>)

(<io> ^radar.tank.position center
^missiles > 0)

-->
(<s> ^operator <o> + >)
(<o> ^name fire-missile

^actions.fire.weapon missile)}

• Note: The rule must test the number of missiles, otherwise it
will not retract after the operator is applied.

“State of the Art”: Simple Tank
• Expanded Attack
• Chase
• Retreat
• Shield Control Rules
• Wait operator (next slide)
• Improved Sound Detection

Wait

• Prevents multiple state no changes
sp {propose*wait

(state <s> ^attribute state
^choices none

-^operator.name wait)
-->

(<s> ^operator <o> + <)
(<o> ^name wait)}

Wait Operator
• How it works

• Detects a state no change (via ^choices none)
• Proposes wait operator only if one is not selected
• Wait operator is selected
• Proposal rule no longer matches and is retracted before

application

Performance Issues
• How to find and correct
• Memories

• Anything greater than 500 should be looked at seriously

• Firing-counts (fc)
• What can you do to remove the top rule?
• Negation?

Soar Summary
• AI engine to support multi-method problem solving

• Applied to wide variety of tasks and methods
• Combines reactive, deliberative, reflective, and learning

• Meta-level reasoning through preference-based decisions & subgoals
• All decisions open to knowledge-based control or deliberate problem solving
• Can always add more knowledge to refine decisions

• Proposed unified theory for modeling human cognition
• Natural language understanding and generation, HCI tasks, simple puzzles, syllogistic

reasoning, new task acquisition, concept acquisition, video game playing, software
debugging, robotic control, learning by instruction, learning by experience, correcting
incorrect knowledge, integration of many capabilities together for a single task, …

• Supports very large bodies of knowledge
• >100,000 rules

• Optimized implementation in ANSI C
• In the public domain

Processing Across Substates
• Problem:

• Rules can fire in substates even though impasse is about to be
resolved

• Run-away substate can generate results that are invalid

• Approach
• Cascade rules from oldest to newest substate
• Remove substates if impasse is resolved
• Recompute match set after each substate processed

• Implications
• Avoids firing rules that will be irrelevant
• Avoids some race conditions

Persistence of Substate Structures:
Problem

• O-supported structure in subgoals can become inconsistent
• Future behavior is no longer reactive to changes in the context

• Non-reentrant – results would be different if rentered subgoal
• Chunks have conditions that can never match

• Test mutually exclusive values of same attribute
• Non-contemporaneous

superstate

substate

chunk

result

-->

Analysis

• Whenever the substate WMEs cannot be recreated
from superstate WMEs using existing rules.

• Occurs from changes to input and returning results.
• Only a problem for o-supported structures and their

entailments
• Not a problem for i-supported structures

Possible Approach
• Remove any substate WME that becomes inconsistent

• One detail of Soar makes this very nasty
• WMEs don’t “blip” when there is a change in i-support
• If an i-supported WME loses support, but at exact same time, same WME is

created with new i-support, WME doesn’t changes

(<s> ^sensor-a < 20) --> (<s> ^enemy near)

• Can’t maintain derivation information with every WME
• Because it can change

• Must dynamically compute derivation information

• Very expensive to maintain and compute

Approach
• A substate is regenerated whenever higher state WMEs

become inconsistent with substate’s internal processing

• Regenerated = all substate structure removed from WM
and new substate created.

• Each substate maintains a goal dependency set (GDS)
• All superstate WMEs tested in creating o-supported WMEs

in substate

• If anything changes in GDS, substate is regenerated.

GDS Example
superstate

A B C

2

3

41

D E

5

substate GDS= [] GDS= [A,D] GDS= [A,B,C,D] GDS= [A,B,C,D] = i-support

= o-support

Implications
• Only an issue for o-supported structures in substates.
• Can’t create o-supported structures based on changing

sensors.
• Can’t create counters of external events in substates

• O-supported structures in substates are steps in that
problem space.
• Look-ahead search

• Can avoid regeneration by maintaining “fragile” o-
support structure on top-state.

Learning/Chunking
• Problem:

• Subgoals “discover” knowledge to resolve impasses but it is lost after
each problem solving episode

• Approach
• Automatically build rules that summarize processing

• Variablize justifications = chunks
• Variablizes only identifiers – no constants
• Loses >, <, … tests between constants
• Conditions include only those test required to produce result = implicit generalization

• Chunks are built as soon as a result is produced
• Immediate transfer is possible

• One chunk for each result, where a result consists of connected WMEs
that become results at the same time

• Different results can lead to very different conditions
• Improves generality of chunks

Chunk Example

superstate

substate

result

Action Examples
superstate

substate

superstate

substate

1
new result

superstate

2

2

2

2

substate new results

Key Feature about Chunking
• Chunk over problem solving necessary to produce result

• Search control should affect efficiency of problem solving, not
correctness

• Do not include search control in analysis for chunks
• Search control = non-acceptable preferences

– Except require and prohibit

• Implications
• Should not use search control to avoid invalid states
• Should incorporate goal tests in search control
• Goal tests can be in preconditions of proposals for operators

Testing for Impasse
• If problem solving result depends on the fact that there

is an impasse, then should not chunk.
• All substates have ^quiescence true
• If tested on path to result, no chunk will be built.
• A bit of a hack for disabling chunking.

Chunking Analysis
• Converts deliberate reasoning/planning to reaction
• Generality of learning based on generality of reasoning

• Leads to many different types learning
• If reasoning is inductive, so is learning

• Soar only learns what it thinks about
• All learning is impasse driven

• Learning arises from a lack of knowledge

Soar 104: Subgoals and Chunking

Propose
Operator

Compare
Operators

Apply
Operator OutputInput Select

Operator
Input Propose

Operator
Compare
Operators

Select
Operator

East

South
North

Tie
Impasse

Evaluate-operator
(North)

North

Evaluate-operator
(South)

= 10 = 10

North > East
South > East
North = South

= 10

Chunking creates
rules that create preferences
based on what was tested

Evaluate-operator = 5
(East)

Chunking creates
rule that applies

evaluate-operator= 10

Learning Results

0

200

400

600

800

1000

1200

1400

1 101 201 301 401 501 601 701 801 901 1001

Decisions

Sc
or

e

random
look-ahead no chunk
look-ahead during chunking
look-ahead after chunking

	Soar TutorialBuilding Intelligent Agents Using Soar
	Historical Perspective
	Historical Perspective
	Historical Perspective
	Historical Perspective
	Historical Perspective
	Historical Perspective
	Desired Behavioral Capabilities
	Water Jug Problem
	Operators and States
	Problem Solving
	Soar 101Internal Problem Solving
	Rule-Based Systems Structure
	Soar SyntaxHello World Rule
	Hello World Operator
	Initial Working Memory
	Working Memory
	Water Jug State Structure
	Water Jug Operators
	Initialize
	Fill Jug
	Instantiations
	Elaboration of ^free
	Instantiations
	Empty Jug
	Pour Proposal
	Pour: two implementations
	Pour Apply Case 1
	Pour Apply Case 2
	Goal Detection
	Waterjug Problem Space
	
	Soar 101- Eaters Style
	Move North
	Short Cut
	Operator Selection
	Problem 1 with Move-North
	Improved Move-North
	Persistence
	Problem 2 with Move-North
	Expanded Soar Cycle
	Extended Move-North
	Move
	
	Move-to-food
	Move-to-food apply
	Short Cut: << >>
	General Move Operator
	General Move
	More Move Selection
	Summary of Preferences
	Complete Soar Cycle
	Record Last-Direction
	Precompute Opposites
	Don’t propose or reject last move
	Jump
	Jump/Move Selection
	Jump/Move Selection
	Soar Tutorial Part II
	New Environment: TankSoar
	TankSoar Output
	TankSoar Input
	Exercise #1: Drive a Tank (10 minutes)
	Game Dynamics
	Game Dynamics #2
	Exercise #2: Wandering Tank
	General apply/remove rules
	Wander Operators
	Move Operator
	Turn Operator
	Better Turn Operator
	Turn Around
	Radar-off
	What Next?
	SUBGOALS in Soar
	Impasses and Subgoals
	Substate Results
	Result Examples
	Persistence of Results
	Justification Example
	Example Substates: State no-change
	Example Substates: Operator Tie
	Example Substates: Operator Conflict
	Example Substates: Operator No-change
	Soar 102: Dynamic Task Decomposition
	TankSoar Hierarchy
	Soar 103: Subgoals
	Soar 103: Subgoals
	Exercise #3
	Default Rules to Support Subgoals
	Elaborations
	Propose Wander
	Revised Move
	Attack!
	Fire Missile
	“State of the Art”: Simple Tank
	Wait
	Wait Operator
	Performance Issues
	Soar Summary
	Processing Across Substates
	Persistence of Substate Structures: Problem
	Analysis
	Possible Approach
	Approach
	GDS Example
	Implications
	Learning/Chunking
	Chunk Example
	Action Examples
	Key Feature about Chunking
	Testing for Impasse
	Chunking Analysis
	Soar 104: Subgoals and Chunking
	Learning Results

