Beyond Chunking

John Laird University of Michigan 23rd Soar Workshop

Architectural Learning

- Automatic & ubiquitous
- Task independent
- Fixed algorithm
- Bounded processing
- No competition with reasoning
- Single experience-based
- Restricted to *active or* bounded history of knowledge
- Examples:
 - Chunking
 - Rule tuning in Act-R

Deliberate/Reflective Learning

- Knowledge engages and controls
- Can be task specific
- Can change with learning
- No fixed bound on processing
 - Competes with other processing
 - Can draw on multiple examples
- Can bring arbitrary knowledge

• Examples:

 \bullet

- Task acquisition
- Learning by instruction
- Learning by analogy
- Recovery from incorrect knowledge

Gospel: Learning in Soar

- Chunking is only architectural learning mechanism
- All other learning is reflective and uses chunking

- Why is this good?
 - All other learning in knowledge based and can be controlled
 - Forces us to learn the boundaries of chunking
 - Demonstrated that chunking is complete
 - Avoid interference between learning mechanisms
 - When should one learning mechanism be used vs. another
 - Couldn't think of other architectural learning mechanisms that fit the problem space computational model

Indications this Might be a Mistake

- After 20 years, chunking isn't ubiquitous
- Many types of learning are very difficult with just chunking
 - Episodic learning
 - Reward-based learning
 - Concept acquisition
- Seduced by completeness of chunking and Soar
 - Ability to convert problem search => knowledge search
 - Didn't think any other learning was necessary

Why Beyond Chunking?

- Learning competes with task at hand
 - Processing is done only to learn, not because to perform the task
 - Chunking requires deliberate processing (operators) to
 - record experiences
 - capture statistical regularities
 - learn new concepts (data chunking)
- Hard to implement, hard to use

Other Architectural Learning Mechanisms?

- Other Sources of Knowledge:
 - Records of past experiences: episodes
 - Statistical correlations of success: reinforcement learning
 - Correlations of facts: semantic learning
 - ??

Requirements

- Automatic, task independent, resource bounded, based on current processing, incremental, ...
- Doesn't create structures that slow system down
- Doesn't interfere with chunking
- Must fit into problem space computational model:
 - elaborations, proposals, selection, applications
- We assume all learned knowledge is rules
- How determine the conditions automatically?
 - Complete state?
 - Usage patterns (activation, backtracing, ...)?
 - ??