A Value-Driven Architecture
for Intelligent Behavior

Pat lLangley
Dan Shapiro

Computational Learning [Laboratory
Center for the Study of Language and Information
Stanford University, Stanford, California

http://cll.stanford.edu/

This research was supported in part by Grant NCC-2-1220 from NASA Ames Research
Center. Thanks to Meg Aycinena, Michael Siliski, Stephanie Sage, and David Nicholas.



Assumptions about Cognitive Architectures

. We should moeve beyond isolated phenomena and capabilities to
develop complete mtelligent agents.

. Artificial intelligence and cognitive psychology are close allies
with distinct but related goals.

. A cognitive architecture specifies the infrastructure that holds
constant over domains, as opposed to knowledge, which varies.
. We should model behavior at the level of functional structures
and processes, not the knowledge or implementation levels.

. A cognitive architecture should commit to representations and
organizations of knowledge and processes that operate on them.
. An architecture should come with a programming language for
encoding knowledge and constructing mtelligent systems.

. An architecture should demonstrate generality and flexibility
rather than success on a single application domain.



Examples of Cognitive Architectures

Some of the cognitive architectures produced over 30 years include:

o ACTE through ACT-R (Anderson, 1976; Anderson, 1993)
e Soar (LLaird, Rosenbloom, & Newell, 1984; Newell, 1990)
o Prodigy (Minton & Carbonell., 1986; Veloso et al., 1995)

o PRS (Georgeft & Lansky, 1987)

e 3T (Gat, 1991; Bonasso et al., 1997)

o EPIC (Kieras & Meyer, 1997)

o APEX (Freed et al., 1998)

However, these systems cover only a small region of the space of
possible architectures.



Goals of the ICARUS Project

We are developing the ICARUS architecture to support effective
construction of mtelligent autonomous agents' that:

e integrate penception and action with cognition

e combine symbolic structures with attective values

e unify reactive behavior with deliberative problem solving

e learn from experience but benefit from domain knowledge

In this talk, we report on our recent progress toward these goals.



Design Principles for ICARUS

Our designs for ICARUS have been guided by five principles:

. Affective values pervade intelligent behavior;
Categorization has primacy over execution;
Execution has primacy over problem: solving;

Tasks and intentions have internal origins; and

R S R

. The agent’s reward 1s determined mternally.

These 1deas distinguish ICARUS from most agent architectures.



(car self)

(car brown-1)
(car green-2)
(car orange-3)
(in-lane self B)

A Cognitive Task for Physical Agents

(#back self 225)
(#back brown-1 208)
(#back green-2 251)
(#back orange-3 239)
(in-lane brown-1 A)

(#front self 235)
(#front brown-1 218)
(#front green-2 261)
(#front orange-3' 249)
(in-lane green-2 A)

(#speed self 60)
(#speed brown-1 65)
(#speed green-2 72)
(#speed orange-3 56)
(in-lane orange-3 C)



Perceptual

Buffer )

Overview of the ICARUS Architecture™
Short-Term
eeeend  Conceptual

Perceive
Memory Environment
t i ‘
Select / Execute Bnvi t
Skill Instance g LCOVvironmen
2
X Nominate
B Skill Instance

}
. Repair Skill
! Conditions
|

Categorize /
Compute Reward

Abandon
Skill Instance

* without learning

Long-Term Short-Term

—

Skill Memory Skill Memory




Some Motivational Termimology

ICARUS relies on three quantitative measures related to motivation:

o Reward — the affective value produced on the current cycle.
o Past reward — the discounted sum: of previous agent reward.

o Fxpected reward — the predicted discounted future reward.

These let an ICARUS agent make decisions that take mto account
its past, present, and future affective responses.



[Long-Term Conceptual Memory,

[CARUS includes a long-term conceptual memory that contains:

e Boolean concepts that are either True or False;

o numeric concepts that have quantitative measures.

These concepts may be either:

o primitive (corresponding to the results of sensory actions);

o defined as a conjunction of other concepts and predicates.
Each Boolean concept includes an associated reward function.

* [carus,” concept memory! is distinct from, and more basic than,
skill memory, and provides the ultimate source of motivation.



Examples of Long-Term Concepts

(ahead-of (?carl ?car2) (coming-from-behind (?carl ?car2)
:defin (car ?carl) (car ?car2) :defin (car ?carl) (car ?car2)
(#back ?carl ?backl) (in-lane ?carl ?lanel)
(#front ?car2 ?front2) (in-lane ?car2 ?lane2)
(> ?backl ?front2) (adjacent ?lanel ?lane2)
:reward  (#dist-ahead ?carl ?car2 ?d) (faster-than ?carl ?car2)
(#speed ?car2 ?s) (ahead-ofi ?car2 ?carl) )
:weights. (5.6 3.1) ) :reward (#dist-behind ?carl ?car2 ?d)

(#speed ?car2 ?7s)
:weights (4.8 —2.7) )

(clear-for (?lane ?car)

:defin (lane ?lane ?left-line ?right-lane)
(not (overlaps-and-adjacent ?car ?other))
(not (coming-from-behind ?car ?other))
(not (coming-from-behind ?other ?car))

;constant 10.0)



A Sample Conceptual Hieranchy

lane

adjacent

faster-than

lear-for |(SEaatm ing-from-behind head-of

#speed

overlaps

in-lane



[Long-Term Skill Memory

ICARUS includes a long-term skill memory in which skills contain:

e an -objective field that encodes the skill”s desired situation;

o a start field that must hold for the skill to be initiated:

o a .requires field that must hold throughout the skill’s execution;
e an :ordered or :unordered field referring to subskills or actions;
o a .values field with numeric concepts to predict expected value;

o a weights ficld mdicating the weight on each numeric concept.

These fields refer to terms stored i conceptual long-term memory.

* [earus,” skill memory encodes knowledge about how and why: to
act in the world, not about how to solve problems.



Examples of Long-Term Skills

(pass (?carl ?car2 ?lane) (change-lanes (?car ?from ?to)

:start (ahead-of ?car2 ?carl) :start (in-lane ?car ?from)
(iIn-same-lane ?carl ?car2) :0bjective (in-lane ?car ?to)

:0bjective (ahead-of ?carl ?car2) :requires (lane ?from ?shared ?right)
(In-same-lane ?carl ?car2) (lane ?to ?left ?shared)

:requires (in-lane ?car2 ?lane) (clear-for ?to ?car)
(adjacent ?lane ?to) :ordered (*shift-left)

;:ordered (speed&change ?carl ?car2 ?lane ?to) :constant 0.0)
(overtake ?carl ?car2 ?lane)
(change-lanes ?carl ?to ?lane))

;values  (#distance-ahead ?carl ?car2 ?d)
(#speed ?car2 ?s)

:weights (0.26 0.17) )



[cARUS” Short-Term Memories

Besides long-term memories, ICARUS stores dynamic structures in:

e a penceptual buffer with primitive Boolean and numeric concepts

o (car car-06), (in-lane car-06 lane-a), (#speed car-06 37)

e a short-term conceptual memory with matched concept mstances

o (ahead-ofi car-06 self), (faster-than car-06 self), (clear-for lane-ai self)

e a short-term skill memory with instances of skills that the agent
mtends to execute

o (speed-up-faster-than self car-06), (change-lanes lane-a lane-b)

These encode temporary beliefs, intended actions, and' their values.

* [earus,” short-term memories Store Specific, value-laden instances
of long-term concepts and skills.



Categorization and Reward i [CARUS

Perceptual §
Buffer )

Long-Term
Conceptual

Categorize /

Memory Compute Reward

Short-Term :
Perceive
Conceptual .
Memory
' |

Categorization occurs in an automatic, bottom-up manner.
A reward 1s calculated for every matched Boolean concept.
This reward 1s a linear function of associated numeric concepts.

Total reward 1s the sum of rewards for all matched concepts.

* Categorization and reward calculation arve inextricably linked.



Skill Nomination and Abandonment

ICARUS adds skill instances to short-term skill memory that:
o refer to concept mstances in short-term conceptual memory;
e have expected reward > agent’s discounted past reward. .

[CARUS removes a skill when its expected reward << past reward.

Short-Term

Conceptual
Memory

s Nominate
| Skill Instance 1

Long-Term | Short-Term Abandon
Skill Memory Skill Memory Skill Instance

t |

* Nomination and abandonment create highly autonomous behavior
that is, motivated by the agent’s internal reward.



Skill Selection and Execution

Perceptual
On each cycle, ICARUS executes the [ S

skill with highest expected reward. S .
Perceive
TON 1 - Cl(\)/? ceptual Environment
Selection invokes deep evaluation emory ‘

to find the action with the highest
expected reward.

. . . : Select / Execute Envi ¢
Execution causes action, including Skill Instance /mmnd —"Vironmen

sensing, which alters memory.

_>.<_

Short-Term

Skill Memory

% [CARUS maikes, value-based choices among: skills, and among the
alternative subskills and actions in each skill.



ICARUS” Interpreter for Skill Execution

(speed&change (?carl ?car2 ?from ?to)
;start (ahead-of ?carl ?car2)
(same-lane ?carl ?car2)
;:0bjective (faster-than ?carl ?car2)
(different-lane ?carl ?car2)
Subskill ;requires (in-lane ?car2 ?from)

- (adjacent ?from ?to)

;:unordered  (*accelerate)
Subskill (change-lanes ?carl ?from ?to) )

Given: Start:
[Fnet (Objectives)and Requitess, then
- chioose among unerdercd Subskills

— consider ordered Subskills

* [CARUS skills have hierarchical structure, and the interpreter uses
a reactive control loop. to identify the most valuable action.



Cognitive Repair of Skill Conditions

[CARUS seeks to repair skills whose requirements do not hold by:
o finding concepts that, 1t true, would let execution continue;
o sclecting the concept that 1simost important to repair; and
o nominating a skill with objectives that mmclude the concept.

Repair takes one cycle and adds at most one skill mstance to memory.

% This backward chaining is similar to means-ends analysis, but it

SUpports execution rather than planning.

Long-Term
Skill Memory

Short-Term
Skill Memory

l
| ¥ Repair Skill
' Conditions

I




ILearning Hierarchical Control Policies

internal reward streams

learned value functions

(pass (?x)
:start

:objective
rrequires

(behind ?x)(same-lane ?x)
(ahead ?x)(same-lane ?x)
(lane ?x ?1)

:components ((speed-up-faster-than ?x)

(change-lanes ?I ?k)
(overtake ?x)
(change-lanes ?k ?l)))

(speed-up-faster-than (?x)

:start
:objective
rrequires

(slower-than ?x)
(faster-than ?x)

()
:components ((accelerate)))

(change-lanes (?I ?k)

:start
:objective
requires

(lane self ?1)
(lane self ?k)
(left-of 2k ?1)

:components ((shift-left)))

(overtake (?x)
:start

:objective
rrequires
:components ((shift-left)))

(behind ?x)(different-lane ?x)
(ahead ?x)
(different-lane ?x)(faster-than ?x)

hierarchical skills

(pass (7x)
:start
:objective
requires
:components

(speed-up-faster-than (?x)

:start
:objective
requires
:components

(change-lanes (?1 7k)

:start
:objective
requires
:components

(overtake (?x)

:start
:objective
requires
:components

(behind ?x)(same-lane ?x)
(ahead ?x)(same-lane ?x)
(lane ?x ?I)
((speed-up-faster-than ?x)
(change-lanes ?I ?k)
(overtake ?x)
(change-lanes 7k ?1)))

(slower-than ?x)
(faster-than ?x)

((accelerate)))

(lane self ?1)
(lane self ?k)
(left-of 7k ?1)
((shift-left)))

(behind ?x)(different-lane ?x)
(ahead ?x)

(different-lane ?x)(faster-than ?x)
((shift-left)))




Revising Expected Reward Functions

ICARUS uses a hierarchical variant of Q learning to revise estimated
reward functions based on imternally computed rewards:

pass

pass

R(t)
change-lanes /N, | speed&change

*shift-left *accelerate

Update Q(S) =0 « ¢ with R(t), Q(s")

% This method learns 100 times, faster than nonhierarchical ones.



Intellectual Precursors
Our work on ICARUS has been influenced by many previous efforts:

e carlier research on itegrated cognitive architectures
o cspecially imnfluenced by ACT, Soar, and Prodigy

e carlier work on architectures for reactive control
o cspecially universal plans and teleoreactive programs

e research on learning value functions from delayed reward
o cspecially hieranchical approaches to Q' learning

e decision theory and decision analysis

e previous versions of ICARUS (going back to 1988).

However, ICARUS combines and extends ideas from its various
predecessors i novel ways.



Directions for Future Research
Future work on ICARUS should introduce additional methods for:

o forward chaining and mental simulation of skills;

o allocation of scarce resources and selective attention;

e probabilistic encoding and matching of Boolean concepts;
e flexible recognition of skills executed by other agents;

e caching of repairs to extend the skill hierarchy;

e revision of internal reward functions for concepts; and

e cxtension of short-term memory to store episodic traces.

Taken together, these features should make ICARUS a more general
and powerful architecture for constructing intelligent agents.



Concluding Remarks

ICARUS is a novel integrated architecture for mtelligent agents that:

o includes separate memornies for concepts and skills;

e ornganizes concepts and skills in a hierarchical manner;

e associates affective values with all cognitive structures;
e calculates these aftective values internally;

e combines reactive execution with cognitive repair; and

e uses expected values to nominate tasks and abandon them.

This constellation of concerns distinguishes ICARUS from: other
research on integrated architectures.



	Assumptions about Cognitive Architectures
	Examples of Cognitive Architectures
	Goals of the ICARUS Project
	Design Principles for ICARUS
	A Cognitive Task for Physical Agents
	Overview of the ICARUS Architecture*
	Some Motivational Terminology
	Long-Term Conceptual Memory
	Examples of Long-Term Concepts
	A Sample Conceptual Hierarchy
	Long-Term Skill Memory
	Examples of Long-Term Skills
	ICARUS’ Short-Term Memories
	Categorization and Reward in ICARUS
	ICARUS’ Interpreter for Skill Execution
	Cognitive Repair of Skill Conditions
	Learning Hierarchical Control Policies
	Revising Expected Reward Functions
	Intellectual Precursors
	Directions for Future Research
	Concluding Remarks

