
A ValueA Value--Driven ArchitectureDriven Architecture
for Intelligent Behaviorfor Intelligent Behavior

Pat LangleyPat Langley
Dan ShapiroDan Shapiro

Computational Learning LaboratoryComputational Learning Laboratory
Center for the Study of Language and InformationCenter for the Study of Language and Information

Stanford University, Stanford, CaliforniaStanford University, Stanford, California
http://http://cllcll.stanford.edu/.stanford.edu/

This research was supported in part by Grant NCCThis research was supported in part by Grant NCC--22--1220 from NASA Ames Research 1220 from NASA Ames Research
Center. Thanks to MegCenter. Thanks to Meg AycinenaAycinena, Michael, Michael SiliskiSiliski, Stephanie Sage, and David Nicholas., Stephanie Sage, and David Nicholas.

Assumptions about Cognitive ArchitecturesAssumptions about Cognitive Architectures

1.1. We should move beyond isolated phenomena and capabilities to We should move beyond isolated phenomena and capabilities to
develop complete intelligent agents.develop complete intelligent agents.

2.2. Artificial intelligence and cognitive psychology are close allieArtificial intelligence and cognitive psychology are close allies s
with distinct but related goals.with distinct but related goals.

3.3. A cognitive architecture specifies the infrastructure that holdsA cognitive architecture specifies the infrastructure that holds
constant over domains, as opposed to knowledge, which varies.constant over domains, as opposed to knowledge, which varies.

4.4. We should model behavior at the level of functional structures We should model behavior at the level of functional structures
and processes, not the knowledge or implementation levels.and processes, not the knowledge or implementation levels.

5.5. A cognitive architecture should commit to representations and A cognitive architecture should commit to representations and
organizations of knowledge and processes that operate on them.organizations of knowledge and processes that operate on them.

6.6. An architecture should come with a programming language for An architecture should come with a programming language for
encoding knowledge and constructing intelligent systems.encoding knowledge and constructing intelligent systems.

7.7. An architecture should demonstrate generality and flexibility An architecture should demonstrate generality and flexibility
rather than success on a single application domain.rather than success on a single application domain.

Examples of Cognitive ArchitecturesExamples of Cognitive Architectures

Some of the cognitive architectures produced over 30 years incluSome of the cognitive architectures produced over 30 years include:de:

•• ACTE through ACTACTE through ACT--R (Anderson, 1976; Anderson, 1993)R (Anderson, 1976; Anderson, 1993)

•• Soar (Laird, Soar (Laird, RosenbloomRosenbloom, & Newell, 1984; Newell, 1990), & Newell, 1984; Newell, 1990)

•• Prodigy (Minton & Prodigy (Minton & CarbonellCarbonell., 1986; ., 1986; Veloso Veloso et al., 1995)et al., 1995)

•• PRS (PRS (Georgeff Georgeff & Lansky, 1987)& Lansky, 1987)

•• 3T (Gat, 1991; 3T (Gat, 1991; Bonasso Bonasso et al., 1997)et al., 1997)

•• EPIC (EPIC (Kieras Kieras & Meyer, 1997)& Meyer, 1997)

•• APEX (Freed et al., 1998)APEX (Freed et al., 1998)

However, these systems cover only a small region of the space ofHowever, these systems cover only a small region of the space of
possible architectures. possible architectures.

Goals of the IGoals of the ICARUSCARUS ProjectProject

We are developing the IWe are developing the ICARUSCARUS architecture to support effective architecture to support effective
construction of intelligent autonomous agents that:construction of intelligent autonomous agents that:

•• integrate perception and action with cognitionintegrate perception and action with cognition

•• combine symbolic structures with affective valuescombine symbolic structures with affective values

•• unify reactive behavior with deliberative problem solvingunify reactive behavior with deliberative problem solving

•• learn from experience but benefit from domain knowledgelearn from experience but benefit from domain knowledge

In this talk, we report on our recent progress toward these goalIn this talk, we report on our recent progress toward these goals. s.

Design Principles for IDesign Principles for ICARUSCARUS

Our designs for IOur designs for ICARUSCARUS have been guided by five principles:have been guided by five principles:

1. Affective values pervade intelligent behavior; 1. Affective values pervade intelligent behavior;

2. Categorization has primacy over execution;2. Categorization has primacy over execution;

3. Execution has primacy over problem solving;3. Execution has primacy over problem solving;

4. Tasks and intentions have internal origins; and4. Tasks and intentions have internal origins; and

5. The agent’s reward is determined internally.5. The agent’s reward is determined internally.

These ideas distinguish IThese ideas distinguish ICARUSCARUS from most agent architectures. from most agent architectures.

A Cognitive Task for Physical AgentsA Cognitive Task for Physical Agents

(car self) (car self) (#back self 225) (#back self 225) (#front self 235) (#front self 235) (#speed self 60)(#speed self 60)
(car brown(car brown--1)1) (#back brown(#back brown--1 208)1 208) (#front brown(#front brown--1 218)1 218) (#speed brown(#speed brown--1 65)1 65)
(car green(car green--2)2) (#back green(#back green--2 251)2 251) (#front green(#front green--2 261)2 261) (#speed green(#speed green--2 72)2 72)
(car orange(car orange--3)3) (#back orange(#back orange--3 239)3 239) (#front orange(#front orange--3 249)3 249) (#speed orange(#speed orange--3 56)3 56)
(in(in--lane self B)lane self B) (in(in--lane brownlane brown--1 A)1 A) (in(in--lane greenlane green--2 A)2 A) (in(in--lane orangelane orange--3 C)3 C)

Overview of the Overview of the IICARUSCARUS Architecture*Architecture*

ShortShort--TermTerm
ConceptualConceptual

MemoryMemory
Categorize /Categorize /

Compute RewardCompute Reward

Select / ExecuteSelect / Execute
Skill InstanceSkill Instance

LongLong--TermTerm
ConceptualConceptual

MemoryMemory

LongLong--TermTerm
Skill MemorySkill Memory

ShortShort--TermTerm
Skill MemorySkill Memory

NominateNominate
Skill InstanceSkill Instance

Repair SkillRepair Skill
ConditionsConditions

AbandonAbandon
Skill InstanceSkill Instance

PerceivePerceive
EnvironmentEnvironment

EnvironmentEnvironment

PerceptualPerceptual
BufferBuffer

* without learning* without learning

Some Motivational TerminologySome Motivational Terminology

IICARUSCARUS relies on three quantitative measures related to motivation:relies on three quantitative measures related to motivation:

•• RewardReward −− the affective value produced on the current cycle.the affective value produced on the current cycle.

•• Past rewardPast reward −− the discounted sum of previous agent reward.the discounted sum of previous agent reward.

•• Expected rewardExpected reward −− the predicted discounted future reward. the predicted discounted future reward.

These let an IThese let an ICARUSCARUS agent make decisions that take into account agent make decisions that take into account
its past, present, and future affective responses. its past, present, and future affective responses.

LongLong--Term Conceptual MemoryTerm Conceptual Memory

IICARUSCARUS includes a longincludes a long--term conceptual memory that contains:term conceptual memory that contains:

•• BooleanBoolean concepts that are either True or False;concepts that are either True or False;

•• numericnumeric concepts that have quantitative measures.concepts that have quantitative measures.

These concepts may be either:These concepts may be either:

•• primitiveprimitive (corresponding to the results of sensory actions);(corresponding to the results of sensory actions);

•• defineddefined as a conjunction of other concepts and predicates.as a conjunction of other concepts and predicates.

Each Boolean concept includes an associated reward function.Each Boolean concept includes an associated reward function.

** Icarus’Icarus’ concept memory is distinct from, and more basic than, concept memory is distinct from, and more basic than,
skill memory, and provides the ultimate source of motivation.skill memory, and provides the ultimate source of motivation.

Examples of LongExamples of Long--Term ConceptsTerm Concepts

(ahead(ahead--ofof (?car1 ?car2)(?car1 ?car2) (coming(coming--fromfrom--behind (?car1 ?car2)behind (?car1 ?car2)
::defndefn (car ?car1) (car ?car2)(car ?car1) (car ?car2) ::defndefn (car ?car1) (car ?car2)(car ?car1) (car ?car2)

(#back ?car1 ?back1)(#back ?car1 ?back1) (in(in--lane ?car1 ?lane1)lane ?car1 ?lane1)
(#front ?car2 ?front2)(#front ?car2 ?front2) (in(in--lane ?car2 ?lane2)lane ?car2 ?lane2)
(> ?back1 ?front2) (> ?back1 ?front2) (adjacent ?lane1 ?lane2)(adjacent ?lane1 ?lane2)

:reward:reward (#dist(#dist--ahead ?car1 ?car2 ?d) ahead ?car1 ?car2 ?d) (faster(faster--than ?car1 ?car2)than ?car1 ?car2)
(#speed ?car2 ?s)(#speed ?car2 ?s) (ahead(ahead--of ?car2 ?car1))of ?car2 ?car1))

:weights:weights (5.6 3.1))(5.6 3.1)) :reward:reward (#dist(#dist--behind ?car1 ?car2 ?d) behind ?car1 ?car2 ?d)
(#speed ?car2 ?s)(#speed ?car2 ?s)

:weights:weights (4.8 (4.8 −−2.7))2.7))

(clear(clear--forfor (?lane ?car)(?lane ?car)
::defndefn (lane ?lane ?left(lane ?lane ?left--line ?rightline ?right--lane)lane)

(not (overlaps(not (overlaps--andand--adjacent ?car ?other))adjacent ?car ?other))
(not (coming(not (coming--fromfrom--behind ?car ?other))behind ?car ?other))
(not (coming(not (coming--fromfrom--behind ?other ?car)) behind ?other ?car))

:constant:constant 10.0)10.0)

A Sample Conceptual Hierarchy

aheadahead--ofofcomingcoming--fromfrom--behindbehind

fasterfaster--thanthan

overlapsoverlaps

inin--lanelane

adjacentadjacent

A Sample Conceptual Hierarchy

lanelane

##ybackybackclearclear--forfor

overlapsoverlaps--andand--adjacentadjacent

carcar

#speed#speed

##yfrontyfront

LongLong--Term Skill MemoryTerm Skill Memory

IICARUSCARUS includes a longincludes a long--term skill memory in which skills contain:term skill memory in which skills contain:

•• an an :objective:objective field that encodes the skill’s desired situation;field that encodes the skill’s desired situation;

•• a a :start:start field that must hold for the skill to be initiated;field that must hold for the skill to be initiated;

•• a a :requires:requires field that must hold throughout the skill’s execution;field that must hold throughout the skill’s execution;

•• an :an :orderedordered or or :unordered:unordered field referring tofield referring to subskillssubskills or actions;or actions;

•• a a :values:values field with numeric concepts to predict expected value;field with numeric concepts to predict expected value;

•• a a :weights:weights field indicating the weight on each numeric concept.field indicating the weight on each numeric concept.

These fields refer to terms stored in conceptual longThese fields refer to terms stored in conceptual long--term memory.term memory.

** Icarus’Icarus’ skill memory encodes knowledge about how and why to skill memory encodes knowledge about how and why to
act in the world, not about how to solve problems.act in the world, not about how to solve problems.

Examples of LongExamples of Long--Term SkillsTerm Skills

(pass (?car1 ?car2 ?lane)(pass (?car1 ?car2 ?lane) (change(change--lanes (?car ?from ?to)lanes (?car ?from ?to)
:start :start (ahead(ahead--of ?car2 ?car1) of ?car2 ?car1) :start:start (in(in--lane ?car ?from)lane ?car ?from)

(in(in--samesame--lane ?car1 ?car2)lane ?car1 ?car2) :objective:objective (in(in--lane ?car ?to)lane ?car ?to)
:objective:objective (ahead(ahead--of ?car1 ?car2) of ?car1 ?car2) :requires:requires (lane ?from ?shared ?right)(lane ?from ?shared ?right)

(in(in--samesame--lane ?car1 ?car2) lane ?car1 ?car2) (lane ?to ?left ?shared)(lane ?to ?left ?shared)
:requires:requires (in(in--lane ?car2 ?lane) lane ?car2 ?lane) (clear(clear--for ?to ?car)for ?to ?car)

(adjacent ?lane ?to) (adjacent ?lane ?to) :ordered:ordered (*shift(*shift--left)left)
:ordered:ordered (speed&change ?car1 ?car2 ?lane ?to)(speed&change ?car1 ?car2 ?lane ?to) :constant:constant 0.0)0.0)

(overtake ?car1 ?car2 ?lane)(overtake ?car1 ?car2 ?lane)
(change(change--lanes ?car1 ?to ?lane))lanes ?car1 ?to ?lane))

:values:values (#distance(#distance--ahead ?car1 ?car2 ?d)ahead ?car1 ?car2 ?d)
(#speed ?car2 ?s)(#speed ?car2 ?s)

:weights:weights (0.26 0.17))(0.26 0.17))

IICARUSCARUS’ Short’ Short--Term MemoriesTerm Memories

Besides longBesides long--term memories, Iterm memories, ICARUSCARUS stores dynamic structures in:stores dynamic structures in:

•• a perceptual buffer with primitive Boolean and numeric conceptsa perceptual buffer with primitive Boolean and numeric concepts
•• (car car(car car--06), (in06), (in--lane carlane car--06 lane06 lane--a), (#speed cara), (#speed car--06 37)06 37)

•• a shorta short--term conceptual memory with matched concept instancesterm conceptual memory with matched concept instances
•• (ahead(ahead--of carof car--06 self), (faster06 self), (faster--than carthan car--06 self), (clear06 self), (clear--for lanefor lane--a self)a self)

•• a shorta short--term skill memory with instances of skills that the agent term skill memory with instances of skills that the agent
intends to executeintends to execute
•• (speed(speed--upup--fasterfaster--than self carthan self car--06), (change06), (change--lanes lanelanes lane--a lanea lane--b)b)

These encode temporary beliefs, intended actions, and their valuThese encode temporary beliefs, intended actions, and their values.es.

** Icarus’Icarus’ shortshort--term memories store specific, valueterm memories store specific, value--laden instances laden instances
of longof long--term concepts and skills.term concepts and skills.

Categorization and Reward in Categorization and Reward in IICARUSCARUS

LongLong--TermTerm
ConceptualConceptual

MemoryMemory

ShortShort--TermTerm
ConceptualConceptual

MemoryMemory
Categorize /Categorize /

Compute RewardCompute Reward
PerceivePerceive

EnvironmentEnvironment

EnvironmentEnvironment

PerceptualPerceptual
BufferBuffer

Categorization occurs in an automatic, bottomCategorization occurs in an automatic, bottom--up manner.up manner.

A reward is calculated for every matched Boolean concept. A reward is calculated for every matched Boolean concept.

This reward is a linear function of associated numeric concepts.This reward is a linear function of associated numeric concepts.

Total reward is the sum of rewards for all Total reward is the sum of rewards for all matchedmatched concepts.concepts.

** Categorization and reward calculation are inextricably linked.Categorization and reward calculation are inextricably linked.

Skill Nomination and AbandonmentSkill Nomination and Abandonment
IICARUSCARUS adds skill instances to shortadds skill instances to short--term skill memory that:term skill memory that:

•• refer to concept instances in shortrefer to concept instances in short--term conceptual memory; term conceptual memory;

•• have have expected reward expected reward > agent’s > agent’s discounted past reward .discounted past reward .

IICARUSCARUS removes a skill when its expected reward removes a skill when its expected reward <<<< past reward.past reward.

LongLong--TermTerm
Skill MemorySkill Memory

ShortShort--TermTerm
Skill MemorySkill Memory

NominateNominate
Skill InstanceSkill Instance

AbandonAbandon
Skill InstanceSkill Instance

ShortShort--TermTerm
ConceptualConceptual

MemoryMemory

** Nomination and abandonment create highly autonomous behavior Nomination and abandonment create highly autonomous behavior
that is motivated by the agent’s internal reward. that is motivated by the agent’s internal reward.

Skill Selection and ExecutionSkill Selection and Execution

ShortShort--TermTerm
ConceptualConceptual

MemoryMemory

ShortShort--TermTerm
Skill MemorySkill Memory

Select / ExecuteSelect / Execute
Skill InstanceSkill Instance

PerceivePerceive
EnvironmentEnvironment

EnvironmentEnvironment

PerceptualPerceptual
BufferBufferOn each cycle, IOn each cycle, ICARUSCARUS executes the executes the

skill with highest expected reward.skill with highest expected reward.

Selection invokes deep evaluation Selection invokes deep evaluation
to find the action with the highest to find the action with the highest
expected reward.expected reward.

Execution causes action, including Execution causes action, including
sensing, which alters memory.sensing, which alters memory.

** IICARUSCARUS makes valuemakes value--based choices among skills, and among the based choices among skills, and among the
alternativealternative subskillssubskills and actions in each skill.and actions in each skill.

IICARUSCARUS’ Interpreter for Skill Execution’ Interpreter for Skill Execution

Objectives

Subskill

Subskill
Start

Requires

(speed&change (?car1 ?car2 ?from ?to)(speed&change (?car1 ?car2 ?from ?to)
:start:start (ahead(ahead--of ?car1 ?car2)of ?car1 ?car2)

(same(same--lane ?car1 ?car2)lane ?car1 ?car2)
:objective :objective (faster(faster--than ?car1 ?car2)than ?car1 ?car2)

(different(different--lane ?car1 ?car2)lane ?car1 ?car2)
:requires:requires (in(in--lane ?car2 ?from)lane ?car2 ?from)

(adjacent ?from ?to)(adjacent ?from ?to)
:unordered:unordered (*accelerate)(*accelerate)

(change(change--lanes ?car1 ?from ?to))lanes ?car1 ?from ?to))

Given Start: Given Start:
If not (Objectives) and Requires, then If not (Objectives) and Requires, then
-- choose among unorderedchoose among unordered Subskills Subskills
-- consider orderedconsider ordered SubskillsSubskills

** IICARUSCARUS skills have hierarchical structure, and the interpreter uses skills have hierarchical structure, and the interpreter uses
a reactive control loop to identify the most valuable action. a reactive control loop to identify the most valuable action.

Cognitive Repair of Skill ConditionsCognitive Repair of Skill Conditions

IICARUSCARUS seeks to repair skills whose requirements do not hold by:seeks to repair skills whose requirements do not hold by:

•• finding concepts that, if true, would let execution continue;finding concepts that, if true, would let execution continue;

•• selecting the concept that is most important to repair; andselecting the concept that is most important to repair; and

•• nominating a skill with objectives that include the concept.nominating a skill with objectives that include the concept.

Repair takes one cycle and adds at most one skill instance to meRepair takes one cycle and adds at most one skill instance to memory.mory.

** This backward chaining is similar to meansThis backward chaining is similar to means--ends analysis, but it ends analysis, but it
supports execution rather than planning.supports execution rather than planning.

LongLong--TermTerm
Skill MemorySkill Memory

ShortShort--TermTerm
Skill MemorySkill Memory

Repair SkillRepair Skill
ConditionsConditions

Learning Hierarchical Control Policies

(pass (?x)
:start (behind ?x)(same-lane ?x)
:objective (ahead ?x)(same-lane ?x)
:requires (lane ?x ?l)
:components ((speed-up-faster-than ?x)

(change-lanes ?l ?k)
(overtake ?x)
(change-lanes ?k ?l)))

(speed-up-faster-than (?x)
:start (slower-than ?x)
:objective (faster-than ?x)
:requires ()
:components ((accelerate)))

(change-lanes (?l ?k)
:start (lane self ?l)
:objective (lane self ?k)
:requires (left-of ?k ?l)
:components ((shift-left)))

(overtake (?x)
:start (behind ?x)(different-lane ?x)
:objective (ahead ?x)
:requires (different-lane ?x)(faster-than ?x)
:components ((shift-left)))

Learning Hierarchical Control Policies
internal reward streamsinternal reward streams

learned value functionslearned value functions

InductionInduction

(pass (?x)
:start (behind ?x)(same-lane ?x)
:objective (ahead ?x)(same-lane ?x)
:requires (lane ?x ?l)
:components ((speed-up-faster-than ?x)

(change-lanes ?l ?k)
(overtake ?x)
(change-lanes ?k ?l)))

(speed-up-faster-than (?x)
:start (slower-than ?x)
:objective (faster-than ?x)
:requires ()
:components ((accelerate)))

(change-lanes (?l ?k)
:start (lane self ?l)
:objective (lane self ?k)
:requires (left-of ?k ?l)
:components ((shift-left)))

(overtake (?x)
:start (behind ?x)(different-lane ?x)
:objective (ahead ?x)
:requires (different-lane ?x)(faster-than ?x)
:components ((shift-left)))

hierarchical skillshierarchical skills

Revising Expected Reward FunctionsRevising Expected Reward Functions

IICARUSCARUS uses a hierarchical variant of Q learning to revise estimated uses a hierarchical variant of Q learning to revise estimated
reward functions based on internally computed rewards:reward functions based on internally computed rewards:

** This method learns 100 times faster than nonhierarchical ones.This method learns 100 times faster than nonhierarchical ones.

passpass
R(t)

speed&changechange-lanes

*accelerate*shift-left

Update Q(S) = θ • φ with R(t), Q(s´)

Intellectual PrecursorsIntellectual Precursors

Our work on IOur work on ICARUSCARUS has been influenced by many previous efforts:has been influenced by many previous efforts:

•• earlier research on integrated cognitive architecturesearlier research on integrated cognitive architectures
•• especially influenced by ACT, Soar, and Prodigyespecially influenced by ACT, Soar, and Prodigy

•• earlier work on architectures for reactive controlearlier work on architectures for reactive control
•• especially universal plans andespecially universal plans and teleoreactiveteleoreactive programsprograms

•• research on learning value functions from delayed rewardresearch on learning value functions from delayed reward
•• especially hierarchical approaches to Q learningespecially hierarchical approaches to Q learning

•• decision theory and decision analysisdecision theory and decision analysis
•• previous versions of Iprevious versions of ICARUSCARUS (going back to 1988).(going back to 1988).

However, IHowever, ICARUSCARUS combines and extends ideas from its various combines and extends ideas from its various
predecessors in novel ways.predecessors in novel ways.

Directions for Future ResearchDirections for Future Research

Future work on IFuture work on ICARUSCARUS should introduce additional methods for:should introduce additional methods for:

•• forward chaining and mental simulation of skills;forward chaining and mental simulation of skills;
•• allocation of scarce resources and selective attention;allocation of scarce resources and selective attention;
•• probabilistic encoding and matching of Boolean concepts; probabilistic encoding and matching of Boolean concepts;
•• flexible recognition of skills executed by other agents;flexible recognition of skills executed by other agents;
•• caching of repairs to extend the skill hierarchy; caching of repairs to extend the skill hierarchy;
•• revision of internal reward functions for concepts; andrevision of internal reward functions for concepts; and
•• extension of shortextension of short--term memory to store episodic traces.term memory to store episodic traces.

Taken together, these features should make ITaken together, these features should make ICARUSCARUS a more general a more general
and powerful architecture for constructing intelligent agents. and powerful architecture for constructing intelligent agents.

Concluding RemarksConcluding Remarks

IICARUSCARUS is a novel integrated architecture for intelligent agents that:is a novel integrated architecture for intelligent agents that:

•• includes separate memories for concepts and skills;includes separate memories for concepts and skills;
•• organizes concepts and skills in a hierarchical manner;organizes concepts and skills in a hierarchical manner;
•• associates affective values with all cognitive structures;associates affective values with all cognitive structures;
•• calculates these affective values internally; calculates these affective values internally;
•• combines reactive execution with cognitive repair; andcombines reactive execution with cognitive repair; and
•• uses expected values to nominate tasks and abandon them. uses expected values to nominate tasks and abandon them.

This constellation of concerns distinguishes IThis constellation of concerns distinguishes ICARUSCARUS from other from other
research on integrated architectures. research on integrated architectures.

	Assumptions about Cognitive Architectures
	Examples of Cognitive Architectures
	Goals of the ICARUS Project
	Design Principles for ICARUS
	A Cognitive Task for Physical Agents
	Overview of the ICARUS Architecture*
	Some Motivational Terminology
	Long-Term Conceptual Memory
	Examples of Long-Term Concepts
	A Sample Conceptual Hierarchy
	Long-Term Skill Memory
	Examples of Long-Term Skills
	ICARUS’ Short-Term Memories
	Categorization and Reward in ICARUS
	ICARUS’ Interpreter for Skill Execution
	Cognitive Repair of Skill Conditions
	Learning Hierarchical Control Policies
	Revising Expected Reward Functions
	Intellectual Precursors
	Directions for Future Research
	Concluding Remarks

