Connecting to External

!'_ Environments

An SGIO Tutorial

June 24, 2003 Soar Workshop: Bob Marinier

i Overview

= Introduction
= What is SGIO and why is it useful
= General structure of SGIO

= Using SGIO
= Classes and methods

= Building Applications with SGIO
=« Headers, libs to include, etc.

June 24, 2003 Soar Workshop: Bob Marinier

i What is SGIO?

= Soar General Input Output

= Want to attach Soar to an external
environment via the input-link and
output-link

= SGIO enables the communication by

mapping between objects the
environment side and the io-link in Soar

June 24, 2003 Soar Workshop: Bob Marinier 3

i Benefits of SGIO

= Alternatives

= Communicate with environment via Tcl

= Slow, requires intimate knowledge of Tdl,
referencing Tcl objects in your C code, or using
a compile library like SWIG

= Have environment communicate directly
with the Soar kernel

= Requires lots of bookkeeping, i.e. tracking
timetags

= Mapping the io-link directly is tedious

June 24, 2003 Soar Workshop: Bob Marinier

i Benefits of SGIO

= Abstracts away from kernel details

= Mapping to io-link is easy

= Can use TSI for debugging

= Can avoid Tcl if not debugging (fast!)
= Can run on multiple machines

= Can easily switch between debugging
and high-performance modes

June 24, 2003 Soar Workshop: Bob Marinier

i SGIO Framework

= Environment (via SGIO) initiates all
communication with Soar

= Environment initializes stuff, puts things on
input-link, reads things from output-link

= Soar does not make calls to the
environment; it simply responds to
commands from it

= The environment does all the pushing and
pulling of io-link WMEs

June 24, 2003 Soar Workshop: Bob Marinier 6

‘L SGIO Framework

Environment

June 24, 2003

SGIO

SGIO

<ommunicatic>

Soar

Soar Workshop: Bob Marinier

i SGIO Framework: Classes

= Three main classes implemented in
C++:

= Soar: represents connection to Soar

= Agent: represents a particular agent
running in a Soar connection

=« WorkingMemory: interface which handles
some of the bookkeeping associated with
the agent’s working memory

June 24, 2003 Soar Workshop: Bob Marinier

i Using SGIO: Overview

= Initialization

= Manipulating the input-link
= Running an Agent

= Manipulating the output-link
= Shutting down

= Compiling an application

June 24, 2003 Soar Workshop: Bob Marinier

i Initialization

= Create a connection to Soar

= Create agents

= Load productions

= Creating working memory interface

June 24, 2003 Soar Workshop: Bob Marinier

10

Initialization: Creating a
i connection to Soar

= Can create either API Soar or SIO Soar
= API compiles the Soar kernel directly into the
application
= Very fast
= No TSI window for debugging
= Single machine

= SIO communicates with Soar via sockets
« Slower
= Get TSI for debugging
= Multiple machines

= This choice does not affect later code

June 24, 2003 Soar Workshop: Bob Marinier

11

Initialization: Creating a
‘L connection to Soar

= If want API Soar

= Sglo::Soar* soar = new sglo::APISoar();

Environment I

June 24, 2003 Soar Workshop: Bob Marinier

Soar

SGIO

Initialization: Creating a
i connection to Soar

= If want SIO Soar
"= SglO::Soar* soar = new
sgio::SI0Soar("127.0.0.1",6969, true);

= Specify IP address, port number, lockstep
= Lockstep is running Soar synchronously

< Sockets >

June 24, 2003 Soar Workshop: Bob Marinier

Environment Soar

Your SGIO
Code
SGIO
Soarside

Initialization: SIOSoar and
i Soarside

= If using sockets, need something to
connect to

= Soarside is a program which handles
SGIO communications

= Must already be running on target
machine

June 24, 2003 Soar Workshop: Bob Marinier 14

i Initialization: Creating agents

= An instance of Soar can run multiple
agents (i.e. multiple eaters or multiple

tanks)

= Create the agent from the soar
connection

B Sglo: :Agent* agent = soar->

CreateAgent ("my—agent") ;
= Specify the agent’s name

June 24, 2003 Soar Workshop: Bob Marinier

Initialization: Loading
i productions

= Assuming the agent is already created:
m agent->LoadProductions ("my-agent.soar") ;

= Specify file to load
« Can only specify a file name, not a path

= If using API Soar, assumes file is located in a
subdirectory of the cwd called “agents”

= If using SIO Soar, assumes file is located in the cwd
= If loading fails, can’t actually detect that at this point

June 24, 2003 Soar Workshop: Bob Marinier 16

Initialization: Creating
i Working Memory Interface

= Create a working memory interface for a
particular agent
B Sgl10: :WorkingMemory* mem = new
sglo: :WorkingMemory (agent) ;
= Specify agent to create the interface for

June 24, 2003 Soar Workshop: Bob Marinier 17

i Manipulating the Input-Link

= Adding WME's

= Updating existing WME'’s
= Removing WME's

= Sending changes to Soar

June 24, 2003 Soar Workshop: Bob Marinier

18

i I-Link: Adding WME’s

= Four kinds of WME's

=« ID WME's: just a name, no value

= Attribute-Value pairs: can specify data type
= Integer WME's
= Float WME's
= String WME's

= Structure can be arbitrarily deep

June 24, 2003 Soar Workshop: Bob Marinier 19

i I-Link: Adding WME's

= Say we want to add
this structure (from [— }

TankSoar)
= Radar and tank are
ID WME's

= Distance and
position are
attribute-value pairs

June 24, 2003 Soar Workshop: Bob Marinier 20

i I-Link: Adding WME’s

= Create a Soarld object in the memory interface for radar
B Sglo::SoarId* radarId = mem->
CreateIdWME (mem->GetILink (), "radar") ;

= Specify WME’s parent and WME’s name
= Parent is the input-link

tank J

()

— distance: 5
\\J)

()
— position: left
(U)

June 24, 2003 Soar Workshop: Bob Marinier 21

i I-Link: Adding WME’s

= Add Tank ID WME in the same way
B Sglo::SoarId* tankId =
CreateIdWME (radarId, "tank") ;

« Parent is the radar WME this time

June 24, 2003

Soar Workshop: Bob Marinier

mem-—>

-

\

N

distance: 5
)

-

\

N

position: left
)

22

i I-Link: Adding WME’s

= Create an integer WME for distance off of the tank WME

B sglo::IntElement* distance = mem—->
CreateIntWME (tankId, "distance", b) ;

= Specify parent, attribute name, attribute value

tank }

position: Ieft}

I

June 24, 2003 Soar Workshop: Bob Marinier 23

i I-Link: Adding WME’s

= Create a string WME for position off of the tank WME
m Sglo::StringElement* position = mem->
CreateStringWME (tankId, "position", "left");
= Specify parent, attribute name, attribute value

tank }

—[distance: 5]
position: left

June 24, 2003 Soar Workshop: Bob Marinier 24

i I-Link: Modifying WME'’s

= If a WME already exists, we can

modify the value
= Say we want to update the distance | |

value to 4

m mem—->Update (distance, 4);

» Specify SGIO element to update and
new value _[

= Can do this for any of the attribute-
value types

position: Ieft]

June 24, 2003 Soar Workshop: Bob Marinier 25

i I-Link: Removing WME’s

= We can also remove existing
WME's
radar
= Children of specified WME will also -

be removed

m mem->DestroyWME (tankId) ;
» Specify SGIO element to remove

= Memory cleanup is handled
internally (so any pointers we
have to child elements are

invalid)

June 24, 2003 Soar Workshop: Bob Marinier

distance: 4

position: left

26

I-Link: Sending changes to

i Soar

= Once all of the manipulations have been
done to the working memory interface,
we need to commit those changes so
the Soar agent can see them

m mem—->Commit () ;
= Sending all the changes at once avoids

repeated overhead of multiple trips to
Soar

June 24, 2003 Soar Workshop: Bob Marinier 27

i Running an agent

= Assuming a connection to Soar already exists:
m soar->RunTi1lOutput () ;

= Runs all agents on this connection for a max of 15
decision cycles

= Can also run a single agent:
B agent->RunTi110utput () ;
= Runs this agent for a max of 15 decision cycles

= 'Bug”: always runs 15 decision cycles the first
time, even if output is generated sooner

June 24, 2003 Soar Workshop: Bob Marinier 28

i Manipulating the Output-Link

= Checking for waiting commands

= Reading commands

= Getting parameters from commands
= Marking commands as processed

June 24, 2003 Soar Workshop: Bob Marinier

29

O-Link: Checking for waiting
i commands

= T0o see if an agent has any commands
waiting on the output-link:

m bool waliting = agent->Commands () ;

June 24, 2003 Soar Workshop: Bob Marinier 30

i O-Link: Reading a command

= [0 get a waiting command:
m std::auto ptr<sgio::Command> cmd =
agent->GetCommand () ;

= Returns a std::auto_ptr

= std::auto_ptr is nice because it takes care of its own
memory management (i.e. we won't have to delete
the command object ourselves)

= If there are multiple commands waiting, will
need to loop to get them all

June 24, 2003 Soar Workshop: Bob Marinier 31

O-Link: Getting command

i name

m std::string name = cmd->GetCommandName () ;
= In this case, name = "move"
= Note: Structures can only be two-level

output-link

direction: right]

June 24, 2003 Soar Workshop: Bob Marinier

O-Link: Reading command
attribute-values

We assume that the environment knows the structure of
commands

= Once we know which command we have, can ask for the values of
specific attributes

std::string value = cmd->
GetParameterValue ("direction");

In this case, value = "right"
May have to convert value to another datatype

direction: right

June 24, 2003 Soar Workshop: Bob Marinier 33

O-Link: Marking commands as
i processed

= Once we have read in all the info
associated with a command and
responded appropriately, we can o |
mark the command as processed | direction: right

B cmd->AddStatusComplete () ;

| .
= This change must be committed

as well, but we usually just
commit it with next i-link update

June 24, 2003 Soar Workshop: Bob Marinier 34

O-Link: Marking commands as
i processed

= Or, if there was an error in
processing the command (i.e. e |
It was missing some

attrlbUteS) % direction: right
s cmd->AddStatuskError () ;

= Once a command has been
marked as an error, we can
add an error code (an integer)

m cmd->AddErrorCode (5) ;

error-code: 5

June 24, 2003 Soar Workshop: Bob Marinier 35

i Shutting down

= Simply delete the memory interface and the
Soar connection:

delete mem;

delete soar;

Memory elements are cleaned up by the
memory interface destructor

Agents are cleaned up in the Soar connection
destructor

Commands are cleaned up by std::auto_ptr

June 24, 2003 Soar Workshop: Bob Marinier 36

Building an application:

i Binaries

m simside.lilb

= Defines environment-side hooks for
communicating with Soar

B soarside.exe

= Connection point if Soar is hot embedded
= sg10o shared.lib

= Some shared classes, like messages

June 24, 2003 Soar Workshop: Bob Marinier

37

i Building an application

= Application must be compiled
multithreaded

s Need to include simside and shared
directories for various headers

= Need to link simside.1lib and
sglio shared.lib

= If using API Soar, need to link
soarkernel.lib (version 8.4.5)

June 24, 2003 Soar Workshop: Bob Marinier 38

i Building an application

©
o | gt 9
- g S22 @
SIO Soar Environment | 28| 2% sockets £ | Soar, TSI
o) = O o
> 0] ‘O 0p)
(0p)]
(D) -~
kS -0
@) U - C
: o o B g5
API Soar Environment G 2 B
5 n Q8
o O
> wn
June 24, 2003 Soar Workshop: Bob Marinier 39

i Compiling: Headers to include

= All explicitly included headers are from
Simside:
» sgio siosoar.h: SIOSoar class
» sgio apisoar.h: APISoar class

» sgio wmemem.h: WorkingMemory, Element
classes

» sgio command.h: Command class
= sgio agent.h: Agent class

= Need shared include directory for things
included by these headers, i.e. thread.h

June 24, 2003 Soar Workshop: Bob Marinier

40

i Running an application

s SIO Soar

= Soarside needs Tcl-8.3.x to run Soar, TSI
« tcl83.dll and tk83.dll must be accessible

= Doesn’t work with Tcl-8.4 (bug in Tcl)

s API Soar
=« Everything is integrated, should just run

June 24, 2003 Soar Workshop: Bob Marinier

41

Running an Application:
i Soarside.exe

= Command line parameters
= Port number: default 6969
= Init file: default soarside-init.tcl

= Example:
= soarside.exe 7605 my-init.tcl

= Note: arguments must be specified in order
= Init file contents
= Switch to directory containing Soar

= source start-soar.tcl
= Switch to directory containing Agents

June 24, 2003 Soar Workshop: Bob Marinier

42

Running an Application:
i Soarside init file example

switch to the location of the version of
Soar we want to use
cd ..\\..\\socar-8.4.5\\

start Soar

sgio-1.0.5]

source start-soar.tcl _{:emmm]
switch to the Agents directory we want to use L[_
cd ..\\sgio-1.0.5\\examples\\simple\\agents\\ i]

June 24, 2003 Soar Workshop: Bob Marinier 43

i Wrapping it up

= SGIO Quick Reference sheet contains
most of the info from this talk

= For the latest SGIO releases and news
and source, or to submit a bug, visit our
SourceForge site at:
http://sourceforge.net/projects/sqgio/

June 24, 2003 Soar Workshop: Bob Marinier 44

http://sourceforge.net/projects/sgio/
http://sourceforge.net/projects/sgio/

i Questions?

June 24, 2003 Soar Workshop: Bob Marinier

45

	Connecting to External Environments
	Overview
	What is SGIO?
	Benefits of SGIO
	Benefits of SGIO
	SGIO Framework
	SGIO Framework
	SGIO Framework: Classes
	Using SGIO: Overview
	Initialization
	Initialization: Creating a connection to Soar
	Initialization: Creating a connection to Soar
	Initialization: Creating a connection to Soar
	Initialization: SIOSoar and Soarside
	Initialization: Creating agents
	Initialization: Loading productions
	Initialization: Creating Working Memory Interface
	Manipulating the Input-Link
	I-Link: Adding WME’s
	I-Link: Adding WME’s
	I-Link: Adding WME’s
	I-Link: Adding WME’s
	I-Link: Adding WME’s
	I-Link: Adding WME’s
	I-Link: Modifying WME’s
	I-Link: Removing WME’s
	I-Link: Sending changes to Soar
	Running an agent
	Manipulating the Output-Link
	O-Link: Checking for waiting commands
	O-Link: Reading a command
	O-Link: Getting command name
	O-Link: Reading command attribute-values
	O-Link: Marking commands as processed
	O-Link: Marking commands as processed
	Shutting down
	Building an application: Binaries
	Building an application
	Building an application
	Compiling: Headers to include
	Running an application
	Running an Application: Soarside.exe
	Running an Application: Soarside init file example
	Wrapping it up
	Questions?

