
June 24, 2003 Soar Workshop: Bob Marinier 1

Connecting to External
Environments

An SGIO Tutorial

June 24, 2003 Soar Workshop: Bob Marinier 2

Overview

Introduction
What is SGIO and why is it useful
General structure of SGIO

Using SGIO
Classes and methods

Building Applications with SGIO
Headers, libs to include, etc.

June 24, 2003 Soar Workshop: Bob Marinier 3

What is SGIO?

Soar General Input Output
Want to attach Soar to an external
environment via the input-link and
output-link
SGIO enables the communication by
mapping between objects the
environment side and the io-link in Soar

June 24, 2003 Soar Workshop: Bob Marinier 4

Benefits of SGIO

Alternatives
Communicate with environment via Tcl

Slow, requires intimate knowledge of Tcl,
referencing Tcl objects in your C code, or using
a compile library like SWIG

Have environment communicate directly
with the Soar kernel

Requires lots of bookkeeping, i.e. tracking
timetags
Mapping the io-link directly is tedious

June 24, 2003 Soar Workshop: Bob Marinier 5

Benefits of SGIO

Abstracts away from kernel details
Mapping to io-link is easy
Can use TSI for debugging
Can avoid Tcl if not debugging (fast!)
Can run on multiple machines
Can easily switch between debugging
and high-performance modes

June 24, 2003 Soar Workshop: Bob Marinier 6

SGIO Framework

Environment (via SGIO) initiates all
communication with Soar

Environment initializes stuff, puts things on
input-link, reads things from output-link
Soar does not make calls to the
environment; it simply responds to
commands from it

The environment does all the pushing and
pulling of io-link WMEs

June 24, 2003 Soar Workshop: Bob Marinier 7

SGIO Framework

Environment

Yo
ur

 S
G

IO

Co
de

SG
IO

Communication Soar

SG
IO

June 24, 2003 Soar Workshop: Bob Marinier 8

SGIO Framework: Classes

Three main classes implemented in
C++:

Soar: represents connection to Soar
Agent: represents a particular agent
running in a Soar connection
WorkingMemory: interface which handles
some of the bookkeeping associated with
the agent’s working memory

June 24, 2003 Soar Workshop: Bob Marinier 9

Using SGIO: Overview
Initialization

Manipulating the input-link
Running an Agent
Manipulating the output-link

Shutting down

Compiling an application

June 24, 2003 Soar Workshop: Bob Marinier 10

Initialization

Create a connection to Soar
Create agents
Load productions
Creating working memory interface

June 24, 2003 Soar Workshop: Bob Marinier 11

Initialization: Creating a
connection to Soar

Can create either API Soar or SIO Soar
API compiles the Soar kernel directly into the
application

Very fast
No TSI window for debugging
Single machine

SIO communicates with Soar via sockets
Slower
Get TSI for debugging
Multiple machines

This choice does not affect later code

June 24, 2003 Soar Workshop: Bob Marinier 12

Initialization: Creating a
connection to Soar

If want API Soar
sgio::Soar* soar = new sgio::APISoar();

Environment
Yo

ur
 S

G
IO

Co

de

SG
IO Soar

June 24, 2003 Soar Workshop: Bob Marinier 13

Initialization: Creating a
connection to Soar

If want SIO Soar
sgio::Soar* soar = new
sgio::SIOSoar("127.0.0.1",6969,true);

Specify IP address, port number, lockstep
Lockstep is running Soar synchronously

Environment

Yo
ur

 S
G

IO

Co
de

SG
IO

Sockets Soar

So
ar

si
de

June 24, 2003 Soar Workshop: Bob Marinier 14

Initialization: SIOSoar and
Soarside

If using sockets, need something to
connect to
Soarside is a program which handles
SGIO communications
Must already be running on target
machine

June 24, 2003 Soar Workshop: Bob Marinier 15

Initialization: Creating agents

An instance of Soar can run multiple
agents (i.e. multiple eaters or multiple
tanks)
Create the agent from the soar
connection
sgio::Agent* agent = soar->

CreateAgent("my-agent");
Specify the agent’s name

June 24, 2003 Soar Workshop: Bob Marinier 16

Initialization: Loading
productions

Assuming the agent is already created:
agent->LoadProductions("my-agent.soar");

Specify file to load
Can only specify a file name, not a path

If using API Soar, assumes file is located in a
subdirectory of the cwd called “agents”
If using SIO Soar, assumes file is located in the cwd
If loading fails, can’t actually detect that at this point

June 24, 2003 Soar Workshop: Bob Marinier 17

Initialization: Creating
Working Memory Interface

Create a working memory interface for a
particular agent
sgio::WorkingMemory* mem = new

sgio::WorkingMemory(agent);
Specify agent to create the interface for

June 24, 2003 Soar Workshop: Bob Marinier 18

Manipulating the Input-Link

Adding WME’s
Updating existing WME’s
Removing WME’s
Sending changes to Soar

June 24, 2003 Soar Workshop: Bob Marinier 19

I-Link: Adding WME’s

Four kinds of WME’s
ID WME’s: just a name, no value
Attribute-Value pairs: can specify data type

Integer WME’s
Float WME’s
String WME’s

Structure can be arbitrarily deep

June 24, 2003 Soar Workshop: Bob Marinier 20

I-Link: Adding WME’s

Say we want to add
this structure (from
TankSoar)
Radar and tank are
ID WME’s
Distance and
position are
attribute-value pairs

input-link

tank

distance: 5

position: left

radar

June 24, 2003 Soar Workshop: Bob Marinier 21

I-Link: Adding WME’s
Create a SoarId object in the memory interface for radar
sgio::SoarId* radarId = mem->

CreateIdWME(mem->GetILink(),"radar");
Specify WME’s parent and WME’s name
Parent is the input-link radar

tank

distance: 5

position: left

June 24, 2003 Soar Workshop: Bob Marinier 22

I-Link: Adding WME’s

Add Tank ID WME in the same way
sgio::SoarId* tankId = mem->

CreateIdWME(radarId,"tank");
Parent is the radar WME this time

radar

tank

distance: 5

position: left

June 24, 2003 Soar Workshop: Bob Marinier 23

I-Link: Adding WME’s

Create an integer WME for distance off of the tank WME
sgio::IntElement* distance = mem->

CreateIntWME(tankId,"distance",5);
Specify parent, attribute name, attribute value

radar

tank

distance: 5

position: left

June 24, 2003 Soar Workshop: Bob Marinier 24

I-Link: Adding WME’s
Create a string WME for position off of the tank WME
sgio::StringElement* position = mem->

CreateStringWME(tankId,"position", "left");
Specify parent, attribute name, attribute value

radar

tank

distance: 5

position: left

June 24, 2003 Soar Workshop: Bob Marinier 25

I-Link: Modifying WME’s
If a WME already exists, we can
modify the value
Say we want to update the distance
value to 4
mem->Update(distance,4);

Specify SGIO element to update and
new value
Can do this for any of the attribute-
value types

radar

tank

distance: 4

position: left

June 24, 2003 Soar Workshop: Bob Marinier 26

I-Link: Removing WME’s

We can also remove existing
WME’s

Children of specified WME will also
be removed

mem->DestroyWME(tankId);
Specify SGIO element to remove

Memory cleanup is handled
internally (so any pointers we
have to child elements are
invalid)

radar

tank

distance: 4

position: left

radar

June 24, 2003 Soar Workshop: Bob Marinier 27

I-Link: Sending changes to
Soar

Once all of the manipulations have been
done to the working memory interface,
we need to commit those changes so
the Soar agent can see them
mem->Commit();
Sending all the changes at once avoids
repeated overhead of multiple trips to
Soar

June 24, 2003 Soar Workshop: Bob Marinier 28

Running an agent

Assuming a connection to Soar already exists:
soar->RunTilOutput();

Runs all agents on this connection for a max of 15
decision cycles

Can also run a single agent:
agent->RunTilOutput();

Runs this agent for a max of 15 decision cycles
“Bug”: always runs 15 decision cycles the first
time, even if output is generated sooner

June 24, 2003 Soar Workshop: Bob Marinier 29

Manipulating the Output-Link

Checking for waiting commands
Reading commands
Getting parameters from commands
Marking commands as processed

June 24, 2003 Soar Workshop: Bob Marinier 30

O-Link: Checking for waiting
commands

To see if an agent has any commands
waiting on the output-link:
bool waiting = agent->Commands();

June 24, 2003 Soar Workshop: Bob Marinier 31

O-Link: Reading a command
To get a waiting command:
std::auto_ptr<sgio::Command> cmd =

agent->GetCommand();
Returns a std::auto_ptr
std::auto_ptr is nice because it takes care of its own
memory management (i.e. we won’t have to delete
the command object ourselves)

If there are multiple commands waiting, will
need to loop to get them all

June 24, 2003 Soar Workshop: Bob Marinier 32

O-Link: Getting command
name

std::string name = cmd->GetCommandName();

In this case, name = "move"
Note: Structures can only be two-level

output-link

move

direction: right

June 24, 2003 Soar Workshop: Bob Marinier 33

O-Link: Reading command
attribute-values

We assume that the environment knows the structure of
commands

Once we know which command we have, can ask for the values of
specific attributes

std::string value = cmd->
GetParameterValue("direction");

In this case, value = "right"
May have to convert value to another datatype

move

direction: right

June 24, 2003 Soar Workshop: Bob Marinier 34

O-Link: Marking commands as
processed

Once we have read in all the info
associated with a command and
responded appropriately, we can
mark the command as processed
cmd->AddStatusComplete();
This change must be committed
as well, but we usually just
commit it with next i-link update

move

direction: right

status: complete

June 24, 2003 Soar Workshop: Bob Marinier 35

O-Link: Marking commands as
processed

Or, if there was an error in
processing the command (i.e.
it was missing some
attributes)
cmd->AddStatusError();

Once a command has been
marked as an error, we can
add an error code (an integer)
cmd->AddErrorCode(5);

move

direction: right

status: error

error-code: 5

June 24, 2003 Soar Workshop: Bob Marinier 36

Shutting down

Simply delete the memory interface and the
Soar connection:
delete mem;
delete soar;

Memory elements are cleaned up by the
memory interface destructor
Agents are cleaned up in the Soar connection
destructor
Commands are cleaned up by std::auto_ptr

June 24, 2003 Soar Workshop: Bob Marinier 37

Building an application:
Binaries

simside.lib
Defines environment-side hooks for
communicating with Soar

soarside.exe
Connection point if Soar is not embedded

sgio_shared.lib
Some shared classes, like messages

June 24, 2003 Soar Workshop: Bob Marinier 38

Building an application

Application must be compiled
multithreaded
Need to include simside and shared
directories for various headers
Need to link simside.lib and
sgio_shared.lib
If using API Soar, need to link
soarkernel.lib (version 8.4.5)

June 24, 2003 Soar Workshop: Bob Marinier 39

Building an application

Environment

Yo
ur

 S
G

IO

Co
de

Si
m

si
de

,
sg

io
_s

ha
re

d

sockets Soar, TSI

So
ar

si
de

SIO Soar

Environment

Yo
ur

 S
G

IO
 C

od
e

Si
m

si
de

,
sg

io
_s

ha
re

d,

so
ar

ke
rn

el
API Soar

June 24, 2003 Soar Workshop: Bob Marinier 40

Compiling: Headers to include

All explicitly included headers are from
Simside:

sgio_siosoar.h: SIOSoar class
sgio_apisoar.h: APISoar class
sgio_wmemem.h: WorkingMemory, Element
classes
sgio_command.h: Command class
sgio_agent.h: Agent class

Need shared include directory for things
included by these headers, i.e. thread.h

June 24, 2003 Soar Workshop: Bob Marinier 41

Running an application

SIO Soar
Soarside needs Tcl-8.3.x to run Soar, TSI

tcl83.dll and tk83.dll must be accessible

Doesn’t work with Tcl-8.4 (bug in Tcl)

API Soar
Everything is integrated, should just run

June 24, 2003 Soar Workshop: Bob Marinier 42

Running an Application:
Soarside.exe

Command line parameters
Port number: default 6969
Init file: default soarside-init.tcl
Example:

soarside.exe 7605 my-init.tcl
Note: arguments must be specified in order

Init file contents
Switch to directory containing Soar
source start-soar.tcl
Switch to directory containing Agents

June 24, 2003 Soar Workshop: Bob Marinier 43

Running an Application:
Soarside init file example

switch to the location of the version of
Soar we want to use
cd ..\\..\\soar-8.4.5\\

start Soar
source start-soar.tcl

switch to the Agents directory we want to use
cd ..\\sgio-1.0.5\\examples\\simple\\agents\\

soar

soar-8.4.5

sgio-1.0.5

soarside

examples

simple

agents

June 24, 2003 Soar Workshop: Bob Marinier 44

Wrapping it up

SGIO Quick Reference sheet contains
most of the info from this talk
For the latest SGIO releases and news
and source, or to submit a bug, visit our
SourceForge site at:
http://sourceforge.net/projects/sgio/

http://sourceforge.net/projects/sgio/
http://sourceforge.net/projects/sgio/

June 24, 2003 Soar Workshop: Bob Marinier 45

Questions?

	Connecting to External Environments
	Overview
	What is SGIO?
	Benefits of SGIO
	Benefits of SGIO
	SGIO Framework
	SGIO Framework
	SGIO Framework: Classes
	Using SGIO: Overview
	Initialization
	Initialization: Creating a connection to Soar
	Initialization: Creating a connection to Soar
	Initialization: Creating a connection to Soar
	Initialization: SIOSoar and Soarside
	Initialization: Creating agents
	Initialization: Loading productions
	Initialization: Creating Working Memory Interface
	Manipulating the Input-Link
	I-Link: Adding WME’s
	I-Link: Adding WME’s
	I-Link: Adding WME’s
	I-Link: Adding WME’s
	I-Link: Adding WME’s
	I-Link: Adding WME’s
	I-Link: Modifying WME’s
	I-Link: Removing WME’s
	I-Link: Sending changes to Soar
	Running an agent
	Manipulating the Output-Link
	O-Link: Checking for waiting commands
	O-Link: Reading a command
	O-Link: Getting command name
	O-Link: Reading command attribute-values
	O-Link: Marking commands as processed
	O-Link: Marking commands as processed
	Shutting down
	Building an application: Binaries
	Building an application
	Building an application
	Compiling: Headers to include
	Running an application
	Running an Application: Soarside.exe
	Running an Application: Soarside init file example
	Wrapping it up
	Questions?

