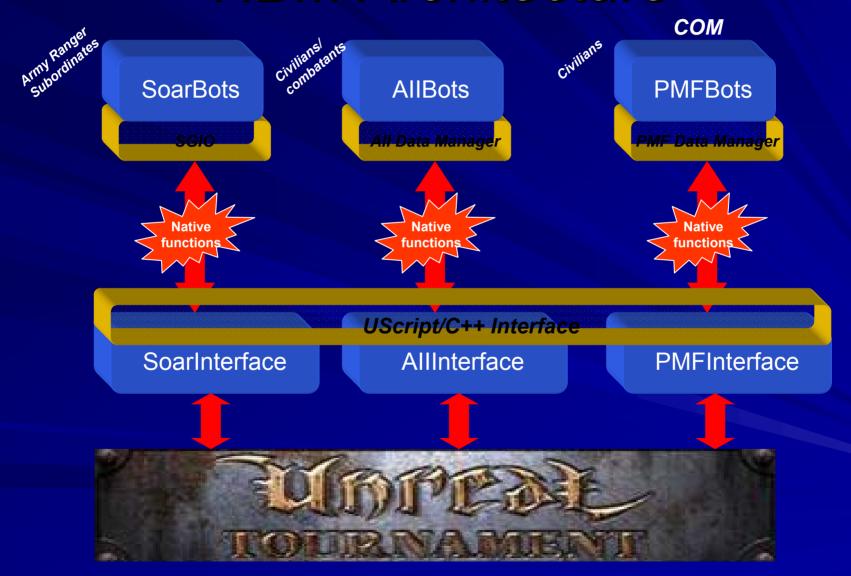
Human Behavior Models and Unreal Tournament

Soar Workshop June 27, 2003

Ryan McAlinden
Institute for Creative Technologies
mcalinden@ict.usc.edu


Introduction

- Objective: Demonstration of simulation-independent, goal-directed tactical Human Behavior Models (HBMs) that reflect Non-Player Character (NPC) behavior, navigation, and emotion
- Team
 - Institute for Creative Technologies (ICT)

 Lead software integrator
 - University of Michigan

 Soar
 - Biographic Technologies Al.Implant
 - University of Pennsylvania Performance Moderator Functions (PMFs)
 - Quicksilver Software, Inc
 Unreal Tournament assets
 - Defense Modeling and Simulation Organization (DMSO)
- Component Overview
 - Simulation Environment
 Unreal Tournament
 - 3 individually developed Human Behavior Models (HBMs)
 - Soar: serves as the central behavior generation component
 - Al.Implant: Path-planning and navigation middleware
 - Performance Moderator Functions: Emotional and physiological effect's modeling
 - Customized Unreal Tournament assets and scripts
 - ICT
 - Quicksilver Software, Inc.

HBM Architecture

Unreal Tournament– Why?

- Highly modularized and replaceable
- A C++ interface based on an object model that is similar to Microsoft Foundation Classes (MFC)
- Supports dynamic loading of DLLs and scripts on demand
- Robust debugging environment, with Visual C++ debugger support
- An UnrealScript interface based on an object model that is similar to Java

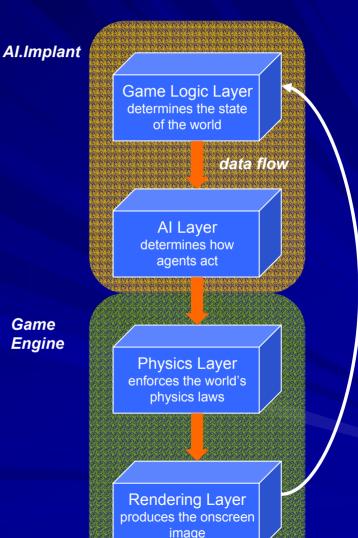
Soar

- Utilizes existing Agent MOUTBots— added follow and tactical scanning operators
 - Manages subordinate bot navigation, communication, and attack behaviors
- Nuggets
 - Straightforward operator/production additions
 - SGIO
 - n-level behavior modeling
- Coal
 - Difficult to debug
 - Communication between Soar and the Game Engine

Al.Implant

Game

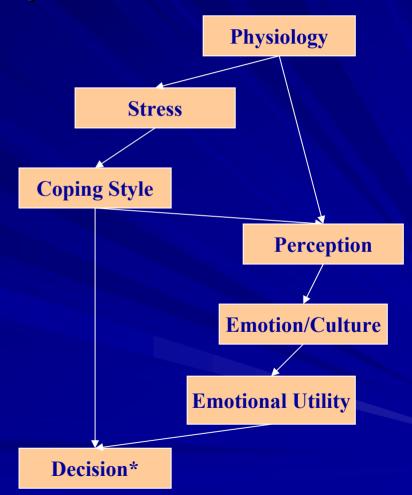
Overview


- Autonomous character creation and management— allows developers to build and control Game Al more easily
 - Group/targeted behaviors
 - Basic navigation and path planning
- SDK– C++ middleware residing from the Game Logic Layer (state of the simulation) to the Physics layer

Nuggets

- Simple development of complex Al controls
- Developer extendibility of existing behaviors
- Relatively simulation-independent
- Straightforward SDK that contains a suite of C++ APIs

Coal


- Limited set of included behaviors
- **Isolated APIs**
- No platform cross-compatibility
- Documentation

Performance Moderator Functions (PMFs)

- Reflects physiological and emotional states of simulationcontrolled players
- Nuggets
 - Modular system that is simulationindependent
 - Models multiple "coping styles" within one architecture
 - Multiple levels of CGF customization
 - Reusable, rapidly composable entities
- Coal

 Lacks a central AI system to control other aspects of character intelligence, movement, and behavior

Conclusion

- HBMs can enhance current simulation capabilities by modeling fairly complex human behaviors and emotions catered to a specific discipline or genre (i.e. military tactics)
- Overall Nuggets
 - Able to qualitatively evaluate how different behavior models interact with one another simultaneously
 - Unreal I Game Engine provides a relatively seamless integration of external components
 - Relatively robust communication mechanisms of HBMs
- Overall Coal
 - Too tightly integrated with simulation
 - Game Engine and asynchronous HBMs don't always exchange data correctly

Demonstration

- Custom-developed Mogadishu level, animations and character models
 - Based off Black Hawk Down scenario
- 3 subordinate SoarBots (Army Rangers)
- 2-5 Al.Implant Bots (civilians, militia)
- 1 PMF Bot

Rapidly Deployable, PMF-Based Human Behavior Modeling SOAR

Questions?