
Reinforcement learning and 
Soar

Shelley Nason



Motivation

Allow Soar to learn about statistical 
regularities in the environment
Use rewards from inner motivation, 
likes/dislikes, emotion to bias behavior
Fine-tune behavior

Learn preferences the programmer didn’t 
bother to write or didn’t realize were 
important



The goal

Automatic and general-purpose learning 
(like chunking)
Ultimately avoid task-specific hand-
coding of features
Currently requires some care in writing 
rules for proper learning



Introducing numeric 
preferences

Productions of the form-
sp {random*production

(state <s> ^operator <o> +)
… (other conditions)

(<s> ^operator <o> = -0.7)}

New decision phase:
Process all reject/better/best/etc. preferences
Compute value for remaining candidate operators 
by summing numeric preferences
Choose operator by softmax (Boltzmann)



Rewards
Rewards are numeric values created at 
specified place in WM. The architecture 
watches this location and collects its 
rewards.
Source of rewards

productions included in agent code
written directly to io-link by environment
Future – generated by emotion or 
physiology system



Fitting within RL framework
The sum over numeric preferences has a 
natural interpretation as an action value 
Q(s,a), the expected discounted sum of 
future rewards, given that the agent takes 
action a from state s.
Here, action a is operator
What is state s?



Updating operator values

O1

conditions r = reward

O2

Q(s’,O2) =

sum of numeric prefs.
Q(s,O1) =

sum of numeric prefs.

Sarsa update-
Q(s,O1) Q(s,O1) + β[r + λQ(s’,O2) – Q(s,O1)]
new numeric preference has value corresponding to 
underlined portion



Rudimentary condition 
collection

This assumes tabular state representation.
For instance, waterjug.
Learn rules directly from operator 
proposals-

sp {|RL-13|
(state <s1> ^jug <i1> 

^operator <o1> +)
(<i1> ^contents 0)
(<o1> ^name fill ^jug <i1>)
-->
(<s1> ^operator <o1> = -0.25)}

sp {waterjug*propose*fill
(state <s> ^jug <i>)
(<i> ^contents 0)
--> 
(<s> ^operator <o> + =)
(<o> ^name fill 

^jug <i>)}



Rudimentary condition 
collection

This doesn’t work without rewriting operator
proposals to include complete state description.
But writing proposals this way confuses
applicability with desirability.

sp {|RL-31|
(state <s1> ^jug <i1> 

{ <> <i1> <j1> } 
^operator <o1> +)

(<i1> ^volume 3 ^contents 3)
(<j1> ^volume 5 ^contents 0)
(<o1> ^name fill ^jug <j1>)
-->
(<s1> ^operator <o1> = -0.225)}

sp {waterjug*propose*fill
(state <s> ^jug <i> 

{ <> <i> <j> } )
(<i> ^contents 0

^volume <v1>)
(<j> ^contents <c> 

^volume <v2>)
--> 
(<s> ^operator <o> + =)
(<o> ^name fill 

^jug <i>)}



Waterjug results

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Run #

# 
m

ov
es

 to
 g

oa
l

New proposal Old proposal



Eaters Results
Eater Scores

0

200

400

600

800

1000

1200

1 23 45 67 89 111 133 155 177 199 221 243 265 287 309 331 353 375 397 419 441 463 485

Move #

To
ta

l s
co

re

Learning1

Learning2

Learning3

Learned

Random

Greedy



Improved condition collection

The charming thing about doing 
reinforcement learning in Soar is that 
we can invent new features and 
conditions to associate values with.
The less charming part is lack of theory 
for arbitrarily adding features.



Improved condition collection:
State generalization

To generalize Q-values over states:
Consider LHS’s of numeric preferences as set of 
(perhaps binary) features

{if energy low and <o> = shields-on,
<o> = -5}

How to combine features into a numeric value?
linear functions
neural nets
memory-based methods
etc.



Improved condition collection:
Feature generation

To generate set of features (LHS’s):
Suggested by programmer, via prototype 
productions:
sp {(state <s> ^operator <o> +

^energy <e>)
(<o> ^name shields-on)

-->
(<s> ^operator <o> = 0)}

Activation based
Learned

perhaps utilizing episodic memory



Substates – Tie impasses
Reintroduce tie impasses when value-based 
information insufficient or conflicting
Confidence – a function of

# of matching numeric preferences
average of abs([r + λQ(s’,a’) – Q(s,a)])
size of difference in values for proposed operators

Tie impasses could be a place to learn 
additional discriminating features



Substates-
Learning over substates

Tie / state no-change impasses

S1

S2

O1  --- --- --- O5

O2  O3  O4

Rewards

Next Action



Substates-
Learning over states

Operator no-change: possible options-like 
framework

S1

S2

O1  O1  O1  O1  O5

O2  O3  O4

Rewards

Next Action



Conclusion-
Difficulties

How much to adopt machine learning 
techniques while fitting neatly within 
Soar
Haven’t settled on method for 
generalizing Q-function
Need to test in more domains; good 
empirical results to take the place of 
convergence proofs



Conclusion-
Good Points

Agents learned good behavior without 
requiring any programmer-specified 
control knowledge
Could be very useful once expanded to 
work in harder domains


	Reinforcement learning and Soar
	Motivation
	The goal
	Introducing numeric preferences
	Rewards
	Fitting within RL framework
	Updating operator values
	Rudimentary condition collection
	Rudimentary condition collection
	Waterjug results
	Eaters Results
	Improved condition collection
	Improved condition collection:State generalization
	Improved condition collection:Feature generation
	Substates – Tie impasses
	Substates-Learning over substates
	Substates-Learning over states
	Conclusion-Difficulties
	Conclusion-Good Points

