
Haunt 2 Soar Bots
By Mike Parent

Overview
Introduction
Behaviors
Implementation
Wrap-up
Future

Haunt 2 Motivation
Provide a complex environment in which to
develop autonomous agents exhibiting
human-like behavior

Introduction
Haunt 2

MOD of Unreal Tournament
Alex Kerfoot – Unrealscript

Haunted mansion
Player controls a “ghost”
Independent Soar bots
Player will attempt to
manipulate bots

Haunt 2 Environment

INSERT MAP HERE

Haunted Mansion
1 floor, 13 rooms
Objects

Doors
Keys
Books
Food/Drinks
Boxes
Matches
Fireplaces

Soar Bots
Input-link contains all pertinent
world info
Uses MOUT movement
productions
Desired Behaviors:

Fulfill Needs (hunger, thirst, cold)
Explore environment
React to player

Behavior Goal Hierarchy

Top-State

Eat Drink Read Warm-up Flee UnlockExplore

Implementing Behaviors
1. Classify available objects
2. Determine status/needs
3. Propose & select actions
4. Break high-level task into sub-goals

Classification: Ontology
Pre-existing world knowledge
Used to classify objects

^ontology

^height-source

^class <WoodenBox>

^food-source

^class <Banana> ^value 10 ^must-cook no

^food-source

^drink-source

^heat-source

…

Classification: Available Objects
All world objects stored with o-support
Available objects elaborated according to ontology
and accessibility
Used to propose behavior operators

^available

^food-source

^name

^location

…

^food-source

^heat-source

…

Status
Determine needs of agent

Thirst
Hunger
Temperature
Fear
Fatigue (future)
Exertion (future)

Group numeric values into priority categories
Example:

Starving: drop everything and find food
Mild hunger: eat if available

Proposal & Selection
Select operators based on need & availability
Preferences based on range, needs & action type

Higher: eating, drinking, fleeing
Lower: exploring, reading

Top-State

Eat Drink Read Warm-up Flee UnlockExplore

Move Face Grab Use

Output-Link Actions
High-level commands composed of primitive
actions

Grab
Use / Use-With
Throw
Drop
Move (coordinate)
Face (direction)
Jump

Eat

Move Face Grab Use

Example: Monkey & Bananas
^available

^unlock-tool <key>

^height-source <step>

Acquire (key)

Clear-Area Place Step Climb (step) Grab (key)

Step 1: Clear Area Below

Acquire (key)

Clear-Area Place Step Climb (step)

Acquire (box) Move Drop

Grab (key)

Step 2: Clear Box

Acquire (key)

Clear-Area Place Step Climb (step)

Acquire (large box) Move Drop

Grab (key)

Acquire (small box) Move Drop

Clear-Top Move Grab

Step 3: Position Box

Acquire (key)

Clear-Area Place Step Climb (step)

Acquire (step) Move Drop

Grab (key)

Step 4-5: Jump and Grab

Acquire (key)

Clear-Area Place Step Climb (step) Grab (key)

Move Jump

Wrap-up
Nuggets

Framework for
implementing
complex behaviors
Easy to add new
behaviors
Behaviors are
modular, and share
sub-goal productions

Coal
May require many
calculations to decide
between a large
number of available
behaviors
More complex
actions may require
deep sub-goal trees

The Future
Short-term

Bigger map, multiple floors
Possession

Player can directly influence a bot’s behavior
“Scared” agents will reject possession

Reactions
Investigate sounds and rearranged objects

Long-term
Interactive Fiction (Brian Magerko)
More realistic physiological and emotional models

Questions?

	Haunt 2 Soar Bots
	Overview
	Haunt 2 Motivation
	Introduction
	Haunt 2 Environment
	Soar Bots
	Behavior Goal Hierarchy
	Implementing Behaviors
	Classification: Ontology
	Classification: Available Objects
	Status
	Proposal & Selection
	Output-Link Actions
	Example: Monkey & Bananas
	Step 1: Clear Area Below
	Step 2: Clear Box
	Step 3: Position Box
	Step 4-5: Jump and Grab
	Wrap-up
	The Future
	Questions?

