
Wray & Chong, Soar 23, 2003-06-27

Quantitative Explorations of 
Category Learning with  

Symbolic Concept Acquisition

Quantitative Explorations of 
Category Learning with  

Symbolic Concept Acquisition

Robert Wray                      Ron Chong
Soar Technology                 George Mason University

Soar 23
27 Jun 2003



Wray & Chong, Soar 23, 2003-06-27

• Subjects instructed to learn to 
accept/reject from three two-valued 
features displayed to screen

• Learning features only displayed during learning trials
• 8 unique instances (4 positive/4 negative)
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Symbolic Concept Acquisition: SCA

• Exemplar model 
• Implemented within Soar architecture

– Previously shown to qualitatively match Shepard et al 
problem type learning curves (Miller, 1993)

– Critical constraint: Cumulation of results within an 
architectural approach mandates SCA (as extant model) 

• Performs general-to-specific search over concept 
space when learning

• Performs specific-to-general search over feature 
space when making predictions

• This implementation: wholly symbolic  
(same learning results with Soar 8 distribution)
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SCA & Human Behavior
Miller & Laird (Cognitive Science, 1996):
• Sensitive to complexity of problem type
• Generates responses in varying time

– Practice effect
– Typicality effect

• Learns linearly and non-linearly separable concepts 
at roughly equivalent rates

• Responds faster & with less error to basic level 
categories (basic level superiority)

• Improves accuracy with training on same data set 
(practice effect)
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Initial Learning Results (Soar 22)

• Direct “out-of-box”
application of SCA
• Simple integration with 

ATC performance model
• 3 features
• 30 runs/problem

- Poor aggregate fit
- Poor qualitative fit
- Little variation from one 

model run to the next
+ Qualitative match to human learning wrt problem type
+ A few individual SCA runs matched human P(Error) 

measures exactly
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Problem Type 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8

16-trial Blocks

P(
E)

Human Brackets         Human Mean          SCA Mean



Wray & Chong, Soar 23, 2003-06-27

Lessons from the data
• Individual subjects showed remarkably different 

learning trajectories
– Type 1: 4 learners above 20% error block8
– Type 6: 1 learner P(E)=0 by second trial
– ~1/3 of  learners still at chance block8

• No individual subject’s learning matched the 
aggregate curves

• Large differences between fastest  and slowest 
human learners; large variation in human learning
FAST/LOW   BRACKET = MIN (Total_Errori)i= 1 … 30 subjects
SLOW/HIGH BRACKET = MAX(Total_Errori)i= 1 … 30 subjects

Total_Error = Σ(P(error)b)b=2 … 8 blocks 
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Reconsidering Initial Results

• Initial SCA model
– Model of individual 

• Knowledge constant over blocks
• Features constant over blocks
• Little variation from one run to next (within type)

– SCA mean within fastest/slowest brackets for all 
three types (and little variation)

• Individual runs also within brackets
– Some SCA individuals match some individual 

subjects qualitatively and quantitatively
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Listening to the Architecture
• Assume Soar & SCA are fixed

– What variables can impact the results?
• SCA learning rate is sensitive to 

– Number of features
• Size of the concept space is combinatorial in the number 

of features
• Initial model assumed minimum 3 features

– Abstraction order
• The more systematic the abstraction, the less search of 

the concept space is needed before definition 
(Depth first search vs.  Breadth first search) 

• Initial model assumed one strategy (relevant feature)
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Feature Space
• 18% of human subjects reported being influenced by 

extraneous features during learning (even though 
instructed to ignore all but fuel, turbulence, & size):
– It might be the direction, the area it was in, location of nearby 

planes,…
– I noticed a pattern between numbers & letters at the bottom of the 

plane
– how close they were to the intersection with other planes …
– The planes that had all the lowest descriptions together or the 

highest descriptions all together were accepted
– a small plane experiencing heavy turbulence and light on fuel 

would definitely need make some adjustments
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SCA Sensitivity to Features
4 Features 
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SCA Sensitivity to Features
5 Features 
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SCA Sensitivity to Features
6 Features 
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Feature Space
• 18% of human subjects reported being influenced by extraneous 

features during learning (even though instructed to ignore all but 
fuel, turbulence, & size):
– It might be the direction, the area it was in, location of nearby planes,…
– I noticed a pattern between numbers & letters at the bottom of the plane
– how close they were to the intersection with other planes …
– The planes that had all the lowest descriptions together or the highest 

descriptions all together were accepted
– a small plane experiencing heavy turbulence and light on fuel would 

definitely need make some adjustments
• Estimated feature space via sensitivity analysis of SCA

– 3 additional random binary features: 
• Nearly flat learning over 8 blocks  (3 or less add’l features necessary)

– Result: uniform distribution of 0-3 additional features in addition to 3 
instructed features
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Fitting SCA to Aggregate Data
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Resulting Predictions
Predictions after fitting to aggregate (no additional modifications):
• Good quantitative fits for both central & peripheral Type 3 
• Poor quantitative but good qualitative match for prediction  

response time
– Need more refined task switching knowledge? 

(current model switches immediately)
• Comparable number of perfect learners for Types 1 & 3

• Increased number of exact correspondences between SCA runs 
and individual human data

Type 3
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Central vs. Peripheral Type 3 
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Limitations & Future Work
• Subject feature space is dynamic/SCA’s is static
• SCA learns something every trial
• Deliberate abstraction
• Exemplar recall insensitive to time & interference

SCA-inspired model based on attention & episodic indexing 
(Altmann & John, 1999)

• Exemplar & hypothesis testing hybrids 
RULEX/SCA hybrid 
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Conclusions
+ SCA able to fit aggregate data reasonably well 

• Good predictions post fitting; fitting tied to observed data
• Match to individual as well as aggregate data (Estes, 2002)
• Model reuse (including code reuse!)

+ Architectural constraint led to unique views of the data
• SCA (+ UTC) effectively predicted additional features played a role 
• Instances of model are instances of simulated individuals

- No single model/approach likely to account for human data 
- Individual data is highly variable
- Some subjects learn measurably little

- Need a priori feature identification
- Future experiments need to control or estimate features

SCA (Soar 8) available: http://www.speakeasy.org/~wrayre/soar/sca/html/
(Fully documented with SoarDocs)

Book on AMBR project in preparation
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