
Action Model Learning with
Inductive Logic Programming

John Hawkins

Advisor: John Laird

Action Modeling

Goal is to understand regularities in the
environment and the effects of actions
Such knowledge is difficult to engineer
manually (c.f. John Laird’s efforts in Tanksoar)
In the simplistic Tanksoar domain, there are
upwards of 280 observable states, even
ignoring the limitations of the agents sensors

Why is action modeling hard?

Actions are complicated/ time consuming to
explicate
Subtleties may make accurate model writing
difficult or impossible
Actions may change over time (broken tread
example)

Related Work

Gil, Wang (OBSERVER, 1994), Benson
(TRAIL, 1995), and Oates & Cohen have done
previous related work
These efforts each assume a more modest
state space, assume that effects of an action
are uniquely determined given it’s pre-
conditions, or assume independence of the
features of the state space.

Learning Task

Sensors & Actions are completely reliable
Time and Space are discrete
Environment is deterministic
Actions have a constant effect horizon
Each agent controls a single tank
Examples are correctly labeled

Approach

Our system used ILP (specifically inverse
entailment through the Aleph engine) to learn
rules describing the triggering conditions
(including actions) for a given predicate
Experiments focused on the ‘blocked’ sensor
for a Tanksoar agent

The Big Picture

Soar
Agent

ILP
Engine

Database

Bias

Background

Rules

ILP

The system extracts from a behavior trace
positive/negative examples of situations that
lead to the target predicate value
An example consists of all sensor predicates
from the previous time step and a record of
actions taken
ILP engine produces rules summarizing the
examples as generally and accurately as
possible.

Summary of Results

Attempted to learn rules about ‘blocked’
sensor, such as:

Turning left while blocked right will result in blocked aft
Moving forward with an obstacle ahead and to the left on
radar will result in being blocked left

Results were ultimately unsatisfactory
Problems can mainly be traced to three key
assumptions

Bias Toward Shorter Rules

Occam’s Razor
If two rules predict equally, choose shorter
Not always true, due in part to length of
structured predicates
Changing relative size of two predicates cannot
fix problem – just leads to mirror difficulties
But bias necessary to speed search

Quantitative Measures of Quality

A rule’s utility is accurately captured by it’s coverage of
examples
Induction process must account for ‘noise’ in the
examples – extremely infrequent cases are nearly
impossible to accurately explain
This leads to ignoring such cases outright
Could be practical to include background knowledge
associating sensors with target predicates they would
be likely to affect?

Single Agent Learning

Assumed system could learn useful information
from observing a single agent

Necessary both for online action modeling (broken tread)
and because only narrow slices of the space result in
interesting outcomes. Random behavior will not find these
slices frequently.

Led to rules describing regularities in agent
Unclear that even dropping this assumption
would solve problem, as patterns might exist
across engineered agents

Nuggets & Coal

Nuggets
– Identified important

potholes for further
research in this area

Coal
– Identified them by hitting

them

	Action Model Learning with Inductive Logic Programming
	Action Modeling
	Why is action modeling hard?
	Related Work
	Learning Task
	Approach
	The Big Picture
	ILP
	Summary of Results
	Bias Toward Shorter Rules
	Quantitative Measures of Quality
	Single Agent Learning
	Nuggets & Coal

