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Action Modeling

Goal is to understand regularities in the 
environment and the effects of actions
Such knowledge is difficult to engineer 
manually (c.f. John Laird’s efforts in Tanksoar)
In the simplistic Tanksoar domain, there are 
upwards of 280 observable states, even 
ignoring the limitations of the agents sensors



Why is action modeling hard?

Actions are complicated/ time consuming to 
explicate
Subtleties may make accurate model writing 
difficult or impossible
Actions may change over time (broken tread 
example)



Related Work

Gil, Wang (OBSERVER, 1994), Benson 
(TRAIL, 1995), and Oates & Cohen have done 
previous related work
These efforts each assume a more modest 
state space, assume that effects of an action 
are uniquely determined given it’s pre-
conditions, or assume independence of the 
features of the state space.



Learning Task

Sensors & Actions are completely reliable
Time and Space are discrete
Environment is deterministic
Actions have a constant effect horizon 
Each agent controls a single tank
Examples are correctly labeled



Approach

Our system used ILP (specifically inverse 
entailment through the Aleph engine) to learn 
rules describing the triggering conditions 
(including actions) for a given predicate
Experiments focused on the ‘blocked’ sensor 
for a Tanksoar agent
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ILP

The system extracts from a behavior trace 
positive/negative examples of situations that 
lead to the target predicate value
An example consists of all sensor predicates 
from the previous time step and a record of 
actions taken
ILP engine produces rules summarizing the 
examples as generally and accurately as 
possible.



Summary of Results

Attempted to learn rules about ‘blocked’ 
sensor, such as:

Turning left while blocked right will result in blocked aft
Moving forward with an obstacle ahead and to the left on 
radar will result in being blocked left

Results were ultimately unsatisfactory
Problems can mainly be traced to three key 
assumptions



Bias Toward Shorter Rules

Occam’s Razor
If two rules predict equally, choose shorter
Not always true, due in part to length of 
structured predicates
Changing relative size of two predicates cannot 
fix problem – just leads to mirror difficulties
But bias necessary to speed search



Quantitative Measures of Quality

A rule’s utility is accurately captured by it’s coverage of 
examples
Induction process must account for ‘noise’ in the 
examples – extremely infrequent cases are nearly 
impossible to accurately explain
This leads to ignoring such cases outright
Could be practical to include background knowledge 
associating sensors with target predicates they would 
be likely to affect?



Single Agent Learning

Assumed system could learn useful information 
from observing a single agent

Necessary both for online action modeling (broken tread) 
and because only narrow slices of the space result in 
interesting outcomes.  Random behavior will not find these 
slices frequently.

Led to rules describing regularities in agent
Unclear that even dropping this assumption 
would solve problem, as patterns might exist 
across engineered agents



Nuggets & Coal

Nuggets
– Identified important 

potholes for further 
research in this area

Coal
– Identified them by hitting 

them
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