
Soar Workshop 2003
June 25, 2003 

Radical Randy Revisited
Top-State Goal Trees in a Real 

Application

Randolph M. Jones
Soar Technology/Colby College



Soar Workshop 2003
June 25, 2003 

Background
• Eight years ago or so, we used to have 

discussions about different ways to 
represent goals in Soar
– And what the role is (or ought to be) of 

operators in Soar
• One proposed approach was “Goal Trees” 

(or “The Radical Randy Approach)
– But only a shallow research investigation

• Now this approach has been used in a “real” 
agent system



Soar Workshop 2003
June 25, 2003 

Application Area
• Intelligent agent to serve as an automated 

wingman for Army Rotary-Wing Aircraft 
missions
– Soar 8.3
– Hooked up to MÄK’s VR-Forces simulator
– Using gSKI
– Writing behaviors from scratch, but relying on lots of 

“conceptual reuse”
• From TacAir-Soar and RWA-Soar

– Both written in Soar 7
– Alternative to trying to re-engineer code for a new 

application and a new architecture



Soar Workshop 2003
June 25, 2003 

Review of “The Michigan Approach”
• The most common way to represent task goals in Soar:

– Select an operator
– If the operator represents a “high-level” action (i.e., it takes time to 

achieve), it cannot immediately execute, so an impasse generates a 
subgoal

– Select an operator in the subgoal, etc.

Essentially a goal stack 
Implemented by Soar’s 
universal subgoaling 
mechanism

Execute-Mission

Follow-Flight-Plan

Fly-Flight-Leg



Soar Workshop 2003
June 25, 2003 

Functional Concerns
• What is the best way to represent trees of 

goals?
• What happens if I want an operator relevant 

to a “high” goal to get selected without 
destroying the rest of the goal stack?



Soar Workshop 2003
June 25, 2003 

Philosophical Concerns
• Why should my agent still need to generate 

operator no-change impasses even after it 
has learned?

• Is an operator an atomic action or not?



Soar Workshop 2003
June 25, 2003 

Psychological Concerns
• Who ever came up with the idea that an 

accurate model of the mind would have a 
goal stack in it?
– If there were ever any doubts, Altmann and 

Trafton have made a good case to put them to 
rest

• There’s no reason to think that “active 
goals” should be represented any differently 
from other active working-memory 
elements



Soar Workshop 2003
June 25, 2003 

Laziness Concerns
• In Soar 8, I need enough information on the 

top state to allow myself to regenerate a 
goal stack any time it might get interrupted
– The goal stack is redundant
– Why not just use the top-state structure and not 

bother to duplicate it in a goal hierarchy?



Soar Workshop 2003
June 25, 2003 

A Simple Example
S1 ^goal G1
S1 ^goal G2
S1 ^goal G3
G1 ^name execute mission
G1 ^subgoal G2
G1 ^subgoal G3
G2 ^name follow-flight-plan
G3 ^name follow-leader



Soar Workshop 2003
June 25, 2003 

Code Examples
sp {top-state*elaborate*goal*subgoal

(state <s> ^name top-state
^goal.subgoal <sg>)

-->
(<s> ^goal <sg>)

}

sp {execute-mission*subgoal*follow-flight-plan
(state <s> ^goal <g>

^flight-plan.active *yes*)
(<g> ^name execute-mission)

-->
(<g> ^subgoal <sg>)
(<sg> ^name follow-flight-plan)

}



Soar Workshop 2003
June 25, 2003 

What Happens To Operators?
• Operators intentionally only remain selected for a 

single decision
– It is still appropriate to learn operator implementations 

in some cases
– But you will not (and should not) get operator no-

change impasses after learning

• Operators for independent goals interleave at the 
top state
– (If you want them to)
– There are also opportunities to engineer operator tie or 

conflict impasses based on contention for resources



Soar Workshop 2003
June 25, 2003 

What About Those Psychological 
Concerns?

• This scheme works in part because the truth 
maintenance system automatically 
maintains (and cleans up) goal relationships
– This is still not psychologically plausible
– But the method puts goals and other working-

memory elements on an equal footing
• Any architectural changes that address the 

psychological validity of working memory will also 
affect goals



Soar Workshop 2003
June 25, 2003 

Mineralogical Assessment
• Coal:

– A rigorously objective evaluation (or comparison to alternatives) 
has not been performed 

• Gold:
– Based on a rigorously subjective evaluation in a small but “real” 

system, the method works extremely well
• Particularly aids software engineering

• Coal:
– An operator cannot learn to send multiple simultaneous output 

commands
• Gold:

– An operator cannot learn to send multiple simultaneous output 
commands


	Radical Randy Revisited
	Background
	Application Area
	Review of “The Michigan Approach”
	Functional Concerns
	Philosophical Concerns
	Psychological Concerns
	Laziness Concerns
	A Simple Example
	Code Examples
	What Happens To Operators?
	What About Those Psychological Concerns?
	Mineralogical Assessment

