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GOAL

Storing and accessing an agent’s past 
experience efficiently
Key component of our learning by 
observation system
Examining the behavior history of a 
Soar agent (i.e. for debugging)
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Snapshop of Working Memory
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Snapshop of Working Memory

AGENT BEHAVIOR HISTORY : The Set of Situations

Situation:
a snapshot of the working 
memory at a time
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Example Situation Interval: 
Positive Examples of Termination

AGENT BEHAVIOR HISTORY : The Set of SituationsA A

Regions operator A is selected

Positive examples of 
Termination Condition of A



Example Situation Interval: 
Positive Examples of Termination

AGENT BEHAVIOR HISTORY : The Set of SituationsA A

hypotheses are tested over each “positive 
situation”



Storing Explicit Situations

For each situation, store all WMEs
Space inefficient



Storing Changes in Situations

Store only the changes of WMEs
i.e. KnoMic (van Lent 2000)

the database has to be traced forward starting 
from the initial situation. 

Difficult to use with learning algorithms that deal with 
noise



Storing Indexed Changes

Store the changes to WMEs and use index 
mechanism to efficiently access situations



Rule Testing at a Situation

Given: 
R1 is a WME id representing a room
S30 is a situation

Example Query:
(R1, ^contains-item, ?VALUE) at S30.

Output:
Return all VALUE such that
(R1 ^contains-item, VALUE)holds at S30.



Storing Indexed Changes

A binary search tree, for each (WME Id, Attribute)
For each query:

Locate the corresponding search tree 
Find values traversing the tree



Binary Search Tree Example
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Binary Search Tree Example
Query: (R1, ^contains-item, ?VALUE) at S30
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Rule Testing at a Situation

Using this scheme, a rule can be tested 
at any situation in the history of an 
agent.
This provides space efficiency, while 
keeping the access times reasonable.

We want more than that !



Rule Testing over a Range of 
Situations

GOAL
test a rule over a range of situations at once.

MOTIVATION
In consecutive situations, similar conditions hold

RESULT
More efficient than testing a rule at each situation 
individually



Testing a Condition on 
Multiple States

Query: 
(R1, contains-item, ?VALUE) 
at S1-S10, S30-S45

Output: 
A Set of (VALUE, Situation-Range) pairs



Testing a Condition on 
Multiple States
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Testing a Condition on 
Multiple States
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Testing a Rule over a Range 
of Situations

A Rule contains multiple conditions 
i.e.    C1 and C2 …
Each Condition Ci propagates:

the values
the set of situations

that satisfy Ci and previous conditions

This idea can be also generalized for 
rules that contain “not” and “or”



Why is this useful?

In Learning by Observation :
The rules are checked over continues 
ranges

A A



Why is this useful?

In Soar Programing:
It may help to understand the behavior of 
a Soar agent.
i.e. Show me all situations when a 
Tanksoar agent has perceived a threat but 
did not fire.



Nuggests

Range Testing is efficient
Space complexity 

Significantly better than explicit storage
Proportional to the number of changes (not situations) 

Time Complexity:
Significantly better than testing at each situation
using the index.
Can potentially perform better than storing situations 
explicitly



Coals

Performance depends on the Environment 
Representation & Rules

Multivalued attributes that change value often 
cause space inefficiency
As the rules gets longer, 
the query mechanism time efficiency decrease
multivalued attributes and “or” connections 
decrease time efficiency.

No direct connection to Soar in current 
implementation
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