
Efficient Rule Testing in
Learning By Observation

Tolga Konik
University of Michigan

GOAL

Storing and accessing an agent’s past
experience efficiently
Key component of our learning by
observation system
Examining the behavior history of a
Soar agent (i.e. for debugging)

Learning By Observation

Expert Interface Environment

Selected
operators

Wme
changes

Episodic
Database Soar Agent

Knowledge
Generation

Domain
Knowledge

Soar ProgramBehavior
history

Horn Clauses
ILP Learning

Snapshop of Working Memory

current-room

other sensorsAGENT

r1

r2

r1

r3

connection
connection

“health”

type

“room1”
name

w3

item
in-room

p1

pathdoor
1 distance

path

destination

path destination

2

distance

pathdoor
p2

path

d1 d2

d5

in-room

door

door

door

current-room

other sensorsAGENT

Snapshop of Working Memory

AGENT BEHAVIOR HISTORY : The Set of Situations

Situation:
a snapshot of the working
memory at a time

current-room

other sensorsAGENT

r1

r2

r1

r3

connection
connection

“health”

type

“room1”
name

w3

item
in-room

p1

pathdoor
1 distance

path

destination

path destination

2

distance

pathdoor
p2

path

d1 d2

d5

in-room

door

door

door

current-room

other sensorsAGENT

current-room

other sensorsAGENT

r1

r2

r1

r3

connection
connection

“health”

type

“room1”
name

w3

item
in-room

p1

pathdoor
1 distance

path

destination

path destination

2

distance

pathdoor
p2

path

d1 d2

d5

in-room

door

door

door

current-room

other sensorsAGENT

current-room

other sensorsAGENT

r1

r2

r1

r3

connection
connection

“health”

type

“room1”
name

w3

item
in-room

p1

pathdoor
1 distance

path

destination

path destination

2

distance

pathdoor
p2

path

d1 d2

d5

in-room

door

door

door

current-room

other sensorsAGENT

Example Situation Interval:
Positive Examples of Termination

AGENT BEHAVIOR HISTORY : The Set of SituationsA A

Regions operator A is selected

Positive examples of
Termination Condition of A

Example Situation Interval:
Positive Examples of Termination

AGENT BEHAVIOR HISTORY : The Set of SituationsA A

hypotheses are tested over each “positive
situation”

Storing Explicit Situations

For each situation, store all WMEs
Space inefficient

Storing Changes in Situations

Store only the changes of WMEs
i.e. KnoMic (van Lent 2000)

the database has to be traced forward starting
from the initial situation.

Difficult to use with learning algorithms that deal with
noise

Storing Indexed Changes

Store the changes to WMEs and use index
mechanism to efficiently access situations

Rule Testing at a Situation

Given:
R1 is a WME id representing a room
S30 is a situation

Example Query:
(R1, ^contains-item, ?VALUE) at S30.

Output:
Return all VALUE such that
(R1 ^contains-item, VALUE)holds at S30.

Storing Indexed Changes

A binary search tree, for each (WME Id, Attribute)
For each query:

Locate the corresponding search tree
Find values traversing the tree

Binary Search Tree Example

i1 i1
i2

i1
i2
i3

i1
i3

i3 i2
i3

2515 8050

i3

6520

40

start 15 20 25 40 50 65 80

Search tree of (R1, contains-item)

Binary Search Tree Example
Query: (R1, ^contains-item, ?VALUE) at S30

VALUE=

i1, i2, i3

20 30 65

40
30

15

i1
i2

i1
i2
i3

25

20 25

30 50 80

start

i1

15

i1
i3

40

i3

50

i2
i3

65

i3

80

Rule Testing at a Situation

Using this scheme, a rule can be tested
at any situation in the history of an
agent.
This provides space efficiency, while
keeping the access times reasonable.

We want more than that !

Rule Testing over a Range of
Situations

GOAL
test a rule over a range of situations at once.

MOTIVATION
In consecutive situations, similar conditions hold

RESULT
More efficient than testing a rule at each situation
individually

Testing a Condition on
Multiple States

Query:
(R1, contains-item, ?VALUE)
at S1-S10, S30-S45

Output:
A Set of (VALUE, Situation-Range) pairs

Testing a Condition on
Multiple States

1-10, 30-45

20 30 – 391-10 6540 - 45

401-10, 30 – 39 40 - 45

i1

15

start 15

1-10

i1
i2

i1
i2
i3

i1
i3

i3

25 50

20 25 40 50

30 – 39
40 - 45 80

i2
i3

65

i3

80

Testing a Condition on
Multiple States

6520

40

1-10, 30-45

1-10, 30 – 39

40 - 45

40 - 45

30 – 391-10

(R1 ^contains-item) at
(R1 ^contains-item) at
(R1 ^contains-item) at

i1
i2
i3

30-39, 40-45
30-39
30-39, 40-45

151-10 25 30 – 39 5040 - 45 80

start

i1

15

i1
i2

20

i1
i2
i3
25

i1
i3

40

i3

50

i2
i3

65

i3

80

Testing a Rule over a Range
of Situations

A Rule contains multiple conditions
i.e. C1 and C2 …
Each Condition Ci propagates:

the values
the set of situations

that satisfy Ci and previous conditions

This idea can be also generalized for
rules that contain “not” and “or”

Why is this useful?

In Learning by Observation :
The rules are checked over continues
ranges

A A

Why is this useful?

In Soar Programing:
It may help to understand the behavior of
a Soar agent.
i.e. Show me all situations when a
Tanksoar agent has perceived a threat but
did not fire.

Nuggests

Range Testing is efficient
Space complexity

Significantly better than explicit storage
Proportional to the number of changes (not situations)

Time Complexity:
Significantly better than testing at each situation
using the index.
Can potentially perform better than storing situations
explicitly

Coals

Performance depends on the Environment
Representation & Rules

Multivalued attributes that change value often
cause space inefficiency
As the rules gets longer,
the query mechanism time efficiency decrease
multivalued attributes and “or” connections
decrease time efficiency.

No direct connection to Soar in current
implementation

	Efficient Rule Testing in Learning By Observation
	GOAL
	Learning By Observation
	Snapshop of Working Memory
	Snapshop of Working Memory
	Example Situation Interval: Positive Examples of Termination
	Example Situation Interval: Positive Examples of Termination
	Storing Explicit Situations
	Storing Changes in Situations
	Storing Indexed Changes
	Rule Testing at a Situation
	Storing Indexed Changes
	Binary Search Tree Example
	Binary Search Tree Example
	Rule Testing at a Situation
	Rule Testing over a Range of Situations
	Testing a Condition on Multiple States
	Testing a Condition on Multiple States
	Testing a Condition on Multiple States
	Testing a Rule over a Range of Situations
	Why is this useful?
	Why is this useful?
	Nuggests
	Coals

