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i GOAL

= Storing and accessing an agent’s past
experience efficiently

= Key component of our learning by
observation system

= Examining the behavior history of a
Soar agent (i.e. for debugging)
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Snapshop of Working Memory
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i Snapshop of Working Memory
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Example Situation Interval:
‘L Positive Examples of Termination
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Example Situation Interval:
‘L Positive Examples of Termination

BEHAVIOR HISTORY

= hypotheses are tested over each "positive
situation”




i Storing Explicit Situations

= For each situation, store all WMEs
= Space inefficient



i Storing Changes in Situations

T R
= Store only the changes of WMEs

= i.e. KnoMic (van Lent 2000)
= the database has to be traced forward starting
from the initial situation.

= Difficult to use with learning algorithms that deal with
noise



i Storing Indexed Changes
%
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= Store the changes to WMEs and use index
mechanism to efficiently access situations



i Rule Testing at a Situation

= Given:

= R1 is a WME id representing a room

= S30 IS a situation
= Example Query:

= (Rl1, “contains-item, ?VALUE) at S30.
= Output:

= Return all VALUE such that

(R1 “contains-item, VALUE)holds at s30.




i Storing Indexed Changes

= A binary search tree, for each (WME Id, Attribute)

= For each query:
= Locate the corresponding search tree
= Find values traversing the tree



i Binary Search Tree Example

s Search tree of (R1, contains-item)




i Binary Search Tree Example

Query: (R1, "“contains-item, ?VALUE) at S30

VALUE=
30 @

= i1, 12, i3




i Rule Testing at a Situation

= Using this scheme, a rule can be tested
at any situation in the history of an
agent.

= This provides space efficiency, while
keeping the access times reasonable.

= We want more than that !



Rule Testing over a Range of
i Situations

= GOAL

= test a rule over a range of situations at once.

= MOTIVATION
= In consecutive situations, similar conditions hold

= RESULT

= More efficient than testing a rule at each situation
individually



Testing a Condition on
i Multiple States

= Query:

= (R1, contains-item, ?VALUE)
at S1-S10, S30-S45

= Output:
= A Set of (VALUE, Situation-Range) pairs



Testing a Condition on
Multiple States
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Testing a Condition on
i Multiple States

= (R1 ~contains-item i,) at 30-39, 40-45
= (R1 ~contains-item i,) at 30-39
= (R1 ~contains-item i;) at 30-39, 40-45




Testing a Rule over a Range
i of Situations

= A Rule contains multiple conditions
«i.e. ClandC(C2..

» Each Condition Ci propagates:
« the values
= the set of situations

that satisfy Ci and previous conditions

= This idea can be also generalized for
rules that contain "not” and “or”




‘L Why is this useful?

= In Learning by Observation :

= | he rules are checked over continues
ranges




i Why is this useful?

= In Soar Programing:

« It may help to understand the behavior of
a Soar agent.

= i.e. Show me all situations when a
Tanksoar agent has perceived a threat but
did not fire.




Nuggests

= Range Testing is efficient

= Space complexity
= Significantly better than explicit storage
= Proportional to the number of changes (not situations)

=« Time Complexity:
= Significantly better than testing at each situation
using the index.

= Can potentially perform better than storing situations
explicitly



i Coals

= Performance depends on the Environment
Representation & Rules

= Multivalued attributes that change value often
cause space inefficiency

= As the rules gets longer,
the query mechanism time efficiency decrease
= multivalued attributes and “or” connections
decrease time efficiency.
= No direct connection to Soar in current
implementation
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