Efficient Rule Testing in

!|_ Learning By Observation

Tolga Konik
University of Michigan

i GOAL

= Storing and accessing an agent’s past
experience efficiently

= Key component of our learning by
observation system

= Examining the behavior history of a
Soar agent (i.e. for debugging)

Learning By Observation

Expert | <¢ump | Interfacc | <¢ummp | Environment
Selected \ Wme

changes
operators

Episodic Domain
Database owled Soar Agent
Behavior\ / \ I Soar Program
history

. Horn Clauses Knowledge
ILP Learning | sl Generatifn

Snapshop of Working Memory

connection
- oor
7(11 connection dZ% ol

1In-room
/ destinmv \
door Pathdoor
| <= (istance s f
/ ~ 1 P tl\ldoor \\\
“rooml” p 2 destination — 13
~ame_ ¥ Apatﬂpath/?l)\'
— distance
rl T path* \ c 29 ltem
/ doo& 2 heal‘tg 1n-10
current-room —v

s typg_

/ \ w3
—>

i Snapshop of Working Memory

AGENT BEHAVIOR HISTORY : The Se

L of Situations

s Situation:

= a shapshot of the working 7&.__%,{% ~
. in-roo m) r2<:
memory at a tlme 1 - distanc door p%door hd = ma{ \\f
room1 ! /atpat patpl | 3

Example Situation Interval:
‘L Positive Examples of Termination

oEAVIOR HISTORY m

B Regions operator A is selected

B Positive examples of
Termination Condition of A

Example Situation Interval:
‘L Positive Examples of Termination

BEHAVIOR HISTORY

= hypotheses are tested over each "positive
situation”

i Storing Explicit Situations

= For each situation, store all WMEs
= Space inefficient

i Storing Changes in Situations

T R
= Store only the changes of WMEs

= i.e. KnoMic (van Lent 2000)
= the database has to be traced forward starting
from the initial situation.

= Difficult to use with learning algorithms that deal with
noise

i Storing Indexed Changes
%

%%Wﬂm‘%

ll l “lll*l *l veY 'l“'“l INARY! vy lu

= Store the changes to WMEs and use index
mechanism to efficiently access situations

i Rule Testing at a Situation

= Given:

= R1 is a WME id representing a room

= S30 IS a situation
= Example Query:

= (Rl1, “contains-item, ?VALUE) at S30.
= Output:

= Return all VALUE such that

(R1 “contains-item, VALUE)holds at s30.

i Storing Indexed Changes

= A binary search tree, for each (WME Id, Attribute)

= For each query:
= Locate the corresponding search tree
= Find values traversing the tree

i Binary Search Tree Example

s Search tree of (R1, contains-item)

i Binary Search Tree Example

Query: (R1, "“contains-item, ?VALUE) at S30

VALUE=
30 @

= i1, 12, i3

i Rule Testing at a Situation

= Using this scheme, a rule can be tested
at any situation in the history of an
agent.

= This provides space efficiency, while
keeping the access times reasonable.

= We want more than that !

Rule Testing over a Range of
i Situations

= GOAL

= test a rule over a range of situations at once.

= MOTIVATION
= In consecutive situations, similar conditions hold

= RESULT

= More efficient than testing a rule at each situation
individually

Testing a Condition on
i Multiple States

= Query:

= (R1, contains-item, ?VALUE)
at S1-S10, S30-S45

= Output:
= A Set of (VALUE, Situation-Range) pairs

Testing a Condition on
Multiple States

ﬂ 1-10, 30-45

1-10, 30 -39 @

40 - 45

4 Iy 4 13 B I3
v, v. I3 I3
13

Testing a Condition on
i Multiple States

= (R1 ~contains-item i,) at 30-39, 40-45
= (R1 ~contains-item i,) at 30-39
= (R1 ~contains-item i;) at 30-39, 40-45

Testing a Rule over a Range
i of Situations

= A Rule contains multiple conditions
«i.e. ClandC(C2..

» Each Condition Ci propagates:
« the values
= the set of situations

that satisfy Ci and previous conditions

= This idea can be also generalized for
rules that contain "not” and “or”

‘L Why is this useful?

= In Learning by Observation :

= | he rules are checked over continues
ranges

i Why is this useful?

= In Soar Programing:

« It may help to understand the behavior of
a Soar agent.

= i.e. Show me all situations when a
Tanksoar agent has perceived a threat but
did not fire.

Nuggests

= Range Testing is efficient

= Space complexity
= Significantly better than explicit storage
= Proportional to the number of changes (not situations)

=« Time Complexity:
= Significantly better than testing at each situation
using the index.

= Can potentially perform better than storing situations
explicitly

i Coals

= Performance depends on the Environment
Representation & Rules

= Multivalued attributes that change value often
cause space inefficiency

= As the rules gets longer,
the query mechanism time efficiency decrease
= multivalued attributes and “or” connections
decrease time efficiency.
= No direct connection to Soar in current
implementation

	Efficient Rule Testing in Learning By Observation
	GOAL
	Learning By Observation
	Snapshop of Working Memory
	Snapshop of Working Memory
	Example Situation Interval: Positive Examples of Termination
	Example Situation Interval: Positive Examples of Termination
	Storing Explicit Situations
	Storing Changes in Situations
	Storing Indexed Changes
	Rule Testing at a Situation
	Storing Indexed Changes
	Binary Search Tree Example
	Binary Search Tree Example
	Rule Testing at a Situation
	Rule Testing over a Range of Situations
	Testing a Condition on Multiple States
	Testing a Condition on Multiple States
	Testing a Condition on Multiple States
	Testing a Rule over a Range of Situations
	Why is this useful?
	Why is this useful?
	Nuggests
	Coals

