The Phase System

Plan Representation in Soar

Sean Lisse

5 Soar Technology

Challenge

m Create an in-Soar-Agent formalism for a set
of tasks - easy to:

¢ Program
¢ Understand
¢ Debug

m Allow those tasks to be modified on-the-fly
by an agent

Real-World Task Example

m Agent 1s given two concurrent tasks to
accomplish:

¢ Driving a car

¢ Talking on a cell-phone

Solving example via Goal Stack

m |n top-state, when the way is clear
¢ start driving the car
+ When the car 1s going
¢ dial the phone
» When the phone is dialed
¢ talk on the phone
m When you reach your destination, stop driving
¢ (and talking... oops!)

The Phase System

m Roots in engineering, not academia
m Similar to “sketchy planners™
¢ High-level actions laid out on top-state
¢ Low-level actions implemented as operators
m Stores plan info on the top state
m Consists of three primary mechanisms
¢ Phases
¢ Conditions
o Tasks

Phases (Plans)

m Ex: “Drive the car”, “Talk on the phone
m Represent a logical or high-level step of a plan
m May be active, inactive, complete, or aborted
¢ Active/inactive: Transient (I-support)
+ Complete/Aborted: Permanent (O-support)
m If complete or aborted, are by definition inactive.
= May contain
o Subphases
o Conditions
o Tasks

Conditions (Preconditions/Constraints)

m Ex: “The way forward is clear”, “The phone has
battery left”

m Predicates that control phase activation

m Represent restrictions on when a phase becomes
active

m Can have parameters, which vary by condition
type
m May be
¢ One of 4 ‘classes’
¢ One of any number of ‘types’

Conditions: ‘Classes’

®m Precondition

¢ Ex: (Driving) I have the keys in my pocket

+ Must all be satisfied in order for a phase to become
active

m [nvariant
¢ Ex: (Phone) The phone has battery left

+ Must all be satisfied for a phase to become and remain
active

m Postcondition

o Ex: (Driving) I am at my destination

+ When all satisfied, mark the phase complete
= Abort-Condition

o Ex: (Phone) The phone has gone dead

+ When any satisfied, mark the phase aborted

Conditions: “Types’

m Conditions are characterized by their “type
attribute — Some possible condition types:

¢ Time based

o Ex: It’s after 4 PM
¢ Sequence based

o Ex: I completed starting the car
¢ Stimulus based

o Ex: The phone has gone dead

Tasks (Actions/Operator Proposal Triggers)

m Ex: Dial the phone number

m Represent basic activities an agent can perform in
the world

m Characterized by
¢ "type attribute
¢ Parameters
m With parent phases, are “operator triggers™

m Can be marked complete by triggered operator

Implementation:
<dial-phone> about to activate

m “phase <dial-phone>

¢ “precondition Aactive *yes™
¢+ "type dial-tone
¢+ “which-device <phone>

¢ “invariant Aactive *yes™
» ‘type power-on
¢+ “which-device <phone>

+ "‘postcondition
¢+ "type task-complete

¢ “task <dial-phone-task>

 “type phone-dialing
o “phone-number (ZZZ) XXX-YYYY

Nuggets

m Allows independent tasks to remain independent

¢ Gives a specific place to store relevant information re:
progress of an action

m Flexible structure
+ Reuse conditions and tasks in myriad combinations
¢ Allows creation of task and condition libraries
®m Debugging is easy
+ Look for the "active flags
m [-support for activation
¢ Supports automatic rollback and propagation
m [ntrospection

¢ Explicit goals and constraints allow agents to create
plans on the fly and reason over them

m Fits within current Soar Architecture

Coal

® More complicated than goal-stack-only Soar

® Where to draw the dividing line between phase
system and operators?

® Only exit conditions for phases/tasks are “aborted”
and “completed”

m Conditions, tasks, and phases are not always
cleanly separable

m Chunking?

Future Directions + Possibilities

m More automated plan generation

¢ Agents that explicitly work toward fulfilling or
avolding conditions

m Better error reporting by agents

m High-Level Editor/IDE for composing plans?
m Research performance effects of the design

m Work in Robustness and error recovery

m Incorporation of advanced concepts from planning
literature

Acknowledgements

m The GDRS project, for funding
development of UV-Soar and with 1t this
Phase System

m Dr. Paul Nielsen, for his help in threshing
out the ideas for the system and identifying
weaknesses 1n earlier approaches

Implementation — *Phases

m “phases
¢ "phase (active)
¢ "“phase <talk-on-phone> (active)
¢ “subphase <dial-phone> (active)
¢ “subphase <talk-to-mom>
¢ “current-phase

¢ “current-phase <talk-on-phone>

¢ “‘current-phase <dial-phone>

Implementation:
Inside <talk-on-phone>

m “phase <talk-on-phone>

+ “name |Talk on the Phong|
¢ 7abort-condition

¢+ "type out-of-batteries

¢+ “which-device <phone>
¢ “nvariant

¢+ type In-possession

¢+ “which-device <phone>
¢ "‘postcondition

» type subphases-complete
¢ "‘subphase <dial-phone>
+ “‘subphase <talk-to-mom>

Implementation:
Inside <dial-phone>

m “phase <dial-phone>
+ “name |Dial the Phone|
¢ “precondition
+ type dial-tone
+ “which-device <phone>
¢ “nvariant
¢ ‘type power-on
¢+ “which-device <phone>
¢ “postcondition
s type task-complete
¢ “task <dial-phone-task>

¢ “type phone-dialing
¢ “phone-number (ZZZ) XXX-YYYY

Implementation:
‘Pull-Up Recursion’
m Conditions of top-level and potential phases

constantly truth-maintained

m When its conditions warrant, a potential or
top-level phase 1s added as a current phase

m When a phase 1s current, its subphases
become potential phases

	The Phase System
	Challenge
	Real-World Task Example
	Solving example via Goal Stack
	The Phase System
	Phases (Plans)
	Conditions (Preconditions/Constraints)
	Conditions: ‘Classes’
	Conditions: ‘Types’
	Tasks (Actions/Operator Proposal Triggers)
	Implementation: <dial-phone> about to activate
	Nuggets
	Coal
	Future Directions + Possibilities
	Acknowledgements
	End of Presentation
	Implementation – ^Phases
	Implementation: Inside <talk-on-phone>
	Implementation: Inside <dial-phone>
	Implementation: ‘Pull-Up Recursion’

