PR-CORCE RESEARCH LABORANDE

Pervasive Activation: Applying the mechanism to declarative and procedural memory

Ronald S. Chong (rchong@gmu.edu) Humans Factors and Applied Cognition Department of Psychology George Mason University

Acknowledgements Michael Schoelles, Christian Lebiere

SOAR AND SHORT-TERM MEMORY EFFECTS

- Newell (1990) proposed Soar as a candidate UTC.
- UTC constrains mechanisms to those that are *functionally* necessary for producing intelligent behavior.

"[Soar] is entirely functional...No mechanisms...have ever been posited just to produce some empirically known effect..." (pp. 309-310)

• No mechanism for short-term memory effects...

"...the only short-term memory effects...are those rooted in mechanisms that have some functional role..." (Ibid)

• Example: Functional limit on WM capacity in sentence comprehension (Young & Lewis, 1999).

• Consequences

- *Plausible* and *principled* modeling of some behavior can be difficult or impossible.
- Example: Behavior where performance is influenced by short-term-memory effects.
- With no *architectural* mechanism, the modeler has to create with their own "model" for short-term memory effects.
- Soar contributes little to this important modeling area.
- Solution

"...To exhibit [short-term memory] effects, Soar would need to be augmented with additional architectural assumptions about these mechanisms and their limitations." (Ibid)

- Borrow the activation and decay mechanisms as defined and used in ACT-R 4.0
 - Rudimentary implementation was done in 2000.
 - Significant improvements were recently made.
- Altmann & Schunn (2002) propose a functional role for decay.

"We argue, based on a simple functional analysis, that...distracting information must decay to allow the cognitive system to have any hope of retrieving target information amidst the unavoidable clutter of a well-stocked memory."

• Perhaps this new mechanism is not breaking with the UTC philosophy after all.

• Basics:

- Based on ACT-R.
- When a WME is created, it is given an initial (*base-level*) activation.
- Activation is a function of the recency and use.
- Activation decays exponentially.
- An element is "forgotten" when its activation falls below the *retrieval threshold*.

- ACT-R
 - All WMEs (working memory elements; chunks) have activation.
- Soar
 - A *partition* of elements in WM have activation.
 - a-memory is the "activated" partition.
 - blip-color is like an ACT-R "chunk-type".
 - items are instances of a type.
 - (bc item bc0) and (bc item bc1) are flagged as having activation.

COMPUTATION OF ACTIVATION — SOAR

- Equation 1: $A_i = B_i + \Sigma W_j S_{ji} + \epsilon_1 + \epsilon_2$ A WME's activation (A_i) is the sum of its "inherent" activation (B_i), the contribution of associated WMEs ($\Sigma W_j S_{ji}$) and one noise terms (ϵ_1 , ϵ_2)
- Equation 2: $B_i = \beta + \ln(\Sigma t_j^{-d})$

A WME's "inherent" activation (B_i) is the sum of its initial (base-level) activation (β) and a calculation of the recency and frequency of use

• Equation 3: $\epsilon_{1,2} = ns_{1,2} * log[(1.0 - p) / p]$ p = rand[0.0, 1.0]

Noise terms (ϵ_1 , ϵ_2) are sampled from a logistic distribution

NUMBER OF PARAMETERS

- ACT-R
 - decay-rate (d)
 - retrieval threshold (rt)
 - base-level constant (β)
 - permanent noise (ϵ_1)
 - transient noise (ε_2)
- Soar
 - decay-rate (d)

 \rightarrow permanent noise (ϵ_1)

- retrieval threshold (rt)
- base-level constant (β)
- NEW: transient noise (e₂)

- ACT-R
 - A WME used to fire a production
 - A new WME, created internally or by the environment, is identical to an existing WME; "chunk merging".
- Soar
 - An *activated* WME is used to fire a production (with one exception).
 - NEW: A new activated WME, created internally or by the environment, is identical to an existing WME; "WME merging".
 - NEW: When deciding between a number of competing operators, only the activated WME in the proposal of the selected operator is boosted.

- ACT-R
 - When a WMEs activation falls below threshold, it remains in memory but is not available to match productions.
- Soar
 - Version 0: The sub-retrieval-threshold WME was removed from working memory.
 - This is no longer the case.
 - NEW: The sub-retrieval-threshold WME is removed from the Rete (to prevent it from matching productions) but remains in working memory (to facilitate debugging and WME merging).

NEW POSSIBILITIES: ACTIVATION AND THE DECISION CYCLE

• Activation-based operator selection

- Indifferent preferences direct the decision procedure to randomly pick among candidates.
- Instead of choosing randomly, the decision procedure can be made to choose the proposal that referenced the most highly *activated* WME/s.
- This is similar to activation-based retrieval in ACT-R 4.0; WME activation is one of the criteria used to select which instantiation to fire.

- ACT-R
 - ACT-R uses spreading activation to cause the cue to increase the activation of the target.
- Soar
 - Unimplemented (for the moment).
 - When a WME has been merged, a special recognition WME will be added to WM.
 - This recognition WME has activation and will decay if not used.

APPLYING ACTIVATION TO PROCEDURAL MEMORY

- A fundamental feature/commitment of Soar is that learned knowledge cannot be forgotten.
- In general, "Practice makes perfect" is not applicable to Soar models.
- Mechanism only applies to chunks (learned productions).
- Rules written by the modeler are *not* subject to forgetting.
- Frequently used (practiced) chunks have their activation reinforced.
- Infrequently used (unpracticed) chunks would be forgotten.
- Forgotten rules can *usually* be learned again; depends on the context.
- Relearning tends to reduce the likelihood a chunk will be forgotten again.
- Have a basic implementation, but still debugging...

NUGGETS

- Combining tested mechanisms from other architectures.
- New Soar modeling opportunities:
 - Used in a model of eye scan patterns and overall performance in a simulated ATC task.
 - Certain errors are emergent.
 - Used in a new Soar category learning model.
 - Models now sensitive to time.
 - Efficiency improvements to the mechanism and explorations in episodic learning and memory—graduate student research @ Michigan.

COAL

- Runtime costs.
- What's missing?
 - Spreading activation
 - Influence of activation on cycle time
 - activation 🗯 match time 🗰 cycle time
 - An account of interference
- How to "rehearse" chunks?