
© 2004 Soar Technology, Inc. 10 Jun 2004 Slide 1

Thinking…

…inside the box

Behavior Design Patterns:
Engineering

Human Behavior Representations
Glenn Taylor Robert Wray

Soar Workshop 24
10 June 2004

Research sponsored by Defense Advanced Research Projects Agency,
Contract DAAH01-03-C-R242

https://www.dmso.mil/public/

© 2004 Soar Technology, Inc. 10 Jun 2004 Slide 2

Problem

Reuse of HBR knowledge representations is
difficult

even when tasks/domains are similar

We recognize as behavior developers that
there are recurring design problems &
solutions
How do we more easily reuse previous
solutions?

Focus: Previous designs

© 2004 Soar Technology, Inc. 10 Jun 2004 Slide 3

Foundations
Design Patterns (Gamma, et al)

Abstractions to address common OO reuse problems
Independent of specific application domains
Iterator, proxy, factory method, etc…

Generic Tasks (Chandrasekaran)
General patterns of problem solving and representation:
Hierarchical classification, hypothesis matching,
knowledge-directed information passing, synthesis by
plan selection and refinement, abductive hypothesis
assembly

Taxonomy of Human Behaviors (Fineberg)
Catalogue of human behavior “primitives”:
Sensation, mediation, reaction, interaction

© 2004 Soar Technology, Inc. 10 Jun 2004 Slide 4

Assumptions
Design patterns may not be applicable for
cognitive models

Architectural dependencies & idiom
Quantitative human data drives low-level details

Design patterns appear to be relevant in human
behavior representation

Focus often more on knowledge level behavior than
immediate behavior (“psychology”)
Qualitative/descriptive validation is the norm
Aggregations (entity vs. individual)

“Engineering” philosophy
Define & capture recurrent behavior design patterns
Use cognitive architectures to guide solution patterns
(psychological constraint)

© 2004 Soar Technology, Inc. 10 Jun 2004 Slide 5

Design Patterns
Reusable software elements that describe a
common problem and solution (Gamma et al.)

Generally:
1) pattern name (for communication/reference)
2) clear definition of the problem
3) clear definition of the solution
4) consequences of using the pattern

Pattern captures aspects of behavior/structure that are
invariant, and call out/encapsulate aspects that vary
DPs language-neutral; details/cost may differ across
languages/architectures
Specific paradigm (OOP)
Specific goal (reuse)

© 2004 Soar Technology, Inc. 10 Jun 2004 Slide 6

Design Pattern example
Name: Strategy
Problem Addressed:

Need multiple variants of an algorithm
Have many modules that execute similar algorithms

Solution:
Encapsulate a family of related algorithms from the objects that
invoke them. Allows implementation to vary independently
from object

Consequences:
Reduces conditional statements in modules
Increased communication overhead

Example: different memory management styles, etc.

Strategy pattern is similar to the notion of a generic task

© 2004 Soar Technology, Inc. 10 Jun 2004 Slide 7

“Behavior”
Design Patterns (BDPs)

Patterns that describe common problems and
solutions in building human behavior
representations
Human behavior representation programming
paradigm (from cognitive architectures):

Agent must strike balance between reactive and goal-
directed behavior

Associative control flow
(re-entrant execution is a basic requirement)

Least-commitment execution
Run-time decision making and conflict resolution
Weak encapsulation

Large, (possibly) changing knowledge bases
Human fidelity constraints

© 2004 Soar Technology, Inc. 10 Jun 2004 Slide 8

Classes of BDPs (1)
Architectural: patterns for underlying
processes, assumptions, constraints

Pattern matching, automatic subgoaling, etc.
Cognitive architectures

assume patterns of processing are fixed (or vary
parametrically)
can be viewed as attempts to define collections of
architectural patterns that are sufficient to describe
human behavior

© 2004 Soar Technology, Inc. 10 Jun 2004 Slide 9

Classes of BDPs (2)
Computational patterns: capture and represent
low-level, domain-independent recurring
computations

Iteration (perform f(x) on all objects x with property y)
Deliberate memory management
Compute vs. retrieve decisions
Process annotation

Similar to (Gamma et al) patterns:
Abstractions from common problems arising from a
particular language/design paradigm
May indicate directions for language/architecture
evolution

© 2004 Soar Technology, Inc. 10 Jun 2004 Slide 10

Classes of BDPs (3)
Behavior-level: knowledge, processes,
tasks related to the specific individual and
task being modeled

Domain Patterns – focus on domain/class-
specific problems/tasks

Examples: Mission (air-to-ground attack), tactical
(maneuver)

Interface Patterns – focus on entity interactions
Virtual vehicles, communications interfaces (eg, FIPA-
ACL), perception, proprioception, etc.

© 2004 Soar Technology, Inc. 10 Jun 2004 Slide 11

Potential benefits of
behavior level BDPs?

Provide language neutrality
Focus on domain-specific (task) patterns, not patterns of
implementation within a language
Transfer of design to other platforms

Improve understandability
Concise descriptions of solutions
Make design elements & decisions explicit
Increased transparency (to developers & users)

Potential results:
More reuse
Devote more effort to novel aspects of behavior
representation
Improve capability/investment ratio

© 2004 Soar Technology, Inc. 10 Jun 2004 Slide 12

Describing patterns?
Natural Language
Diagrams

UML (State Diagrams, Sequence Diagrams, etc.) is
standard in OOP Software Engineering, may not have
right primitives; AUML may not be expressive enough
Bottom line: Multiple diagrammatic views are needed for
many patterns

Language-specific examples
Multiple language implementations of the same pattern
can help make design trade-offs more explicit

All are needed to fully capture a pattern for reuse

© 2004 Soar Technology, Inc. 10 Jun 2004 Slide 13

Patterns in existing HBRs
Analysis of TacAir-Soar

Comprehensive suite of FWA missions and
aircraft: Tactical air combat, close-air support,
refueling, etc.
Focus: close-air support mission

mission phases, roles, entities, domain concepts

Methodology
Look for generalities, repetition in processes,
structures
Isolate functionality, encapsulate, generalize
Describe as patterns

© 2004 Soar Technology, Inc. 10 Jun 2004 Slide 14

Close-air support

© 2004 Soar Technology, Inc. 10 Jun 2004 Slide 15

TacAir-Soar analysis
Assigned individual knowledge representations
into eight classes:

Communications: How and when to talk to other agents,
and how to interpret incoming communications
Missions: Mission-specific behaviors, such as for air-to-
ground missions (CAS) or air-to-air missions (DCA)
Control: How to direct other units to take action
Coordination: How to work with other friendly agents
Flying: How to fly a plane
Navigation: How to decide where to go and how to get
there
Situational Awareness: How to manage information about
the environment
Action: Atomic interactions with the simulation platform

Are there patterns within the categories?

© 2004 Soar Technology, Inc. 10 Jun 2004 Slide 16

TacAir-Soar analysis
Potential patterns at many different levels of
abstraction:

Mission-level patterns
Air-to-ground attack

Tactical patterns
Chase-target

Multi-agent interaction patterns
Directive pattern (command/response)
Patterns adopted from MAS/AOP community
(ACLs, conversation policies)

Information processing patterns
Situation awareness

Interaction patterns
Vehicle/movement control

© 2004 Soar Technology, Inc. 10 Jun 2004 Slide 17

Movement behaviors

© 2004 Soar Technology, Inc. 10 Jun 2004 Slide 18

Behavior interactions
Many interactions between behaviors/patterns
Many patterns are cross-cutting (“aspectual”)

comms
situational
awareness

© 2004 Soar Technology, Inc. 10 Jun 2004 Slide 19

Chase-Target pattern

© 2004 Soar Technology, Inc. 10 Jun 2004 Slide 20

Air-to-Ground Attack

© 2004 Soar Technology, Inc. 10 Jun 2004 Slide 21

Air-to-Ground Attack

© 2004 Soar Technology, Inc. 10 Jun 2004 Slide 22

How to use patterns?
Indirectly: read the “BDP Catalog”, find
pattern that fit your problem, and use the
design solution to build your own
implementation

(more) Directly: Use generative
programming techniques to create
templates for generating solution instances

Tcl -> Soar

© 2004 Soar Technology, Inc. 10 Jun 2004 Slide 23

Simple example:
Iterator Pattern

Purpose: Provide a way to access the
elements of an aggregate sequentially
without exposing its underlying
representation (GOF)

Example: processing elements in a list

<iterator>

List
Item

List
Item

List
Item

List
Item

List
Item

© 2004 Soar Technology, Inc. 10 Jun 2004 Slide 24

Possible Iterator Variations
Sequential order pre-determined (list)
Sequential order not pre-determined, but not
important (unordered set)
Sequential order determined as part of processing
(search)
…

Examples in HBR:
route following
iterating over targets
dealing with messages in priority order
etc.

© 2004 Soar Technology, Inc. 10 Jun 2004 Slide 25

Iterator Pattern Template

Use iterator object to keep track of current element
Create a new context in which to iterate

Explicit operator for iterating to encapsulate process from
unrelated operators (template)
Proposal based on matching against existing iterator
Retraction based on iterator absence
Use other sub-operators for processing on current element

User responsible for creating iterator instance (template)
Auto-generate iterator destructor (template)
User responsible for either telling iterator how to find the
next element as part of instantiation (if well defined), or
actually determining the next element as part of processing

© 2004 Soar Technology, Inc. 10 Jun 2004 Slide 26

Template continued…
Create the iterator structure

(as production RHS):
iterator-constructor \

location iterator-name \
first-element

Base iterator template generator:
iterator-template \

production-base-name \
opname lhstest rhsset \
iterator-name {next-test NULL}

Generates 3-4 productions to deal with iteration
over specific structure

External processing
of element…

© 2004 Soar Technology, Inc. 10 Jun 2004 Slide 27

Current & future work
Refine/extend/define notation for behavior
design patterns

Define “interacts with” subclasses/relationships
Hierarchical
Compositional
Aspectual

Evaluate/extend pattern definition
Create additional diagrammatic views

Task priority (potential interruptions)
Communication protocols
Tension: succinctness <--> behavior complexity

© 2004 Soar Technology, Inc. 10 Jun 2004 Slide 28

Current & future work
Demonstrate (re-)use of patterns in new behavior
systems
Demonstrate reuse of patterns for other platforms

Long-term goal: Platform independent catalogue of BDPs

Catalog behavior design patterns
Refine evaluation metrics

What constitutes a “good” pattern?
Chase-target pattern: psychological relationship between
follow leader and engaging enemy?

What are good/best/most effective ways of cataloging/
communicating patterns

From description to programmability
Improving encapsulation & interfaces for cognitive archs
Template support

© 2004 Soar Technology, Inc. 10 Jun 2004 Slide 29

Summary
Demonstrated “behavior design patterns”
are evident in existing HBR systems

Analysis/review of TAS made many implicit
design patterns evident

Proposed strawman for behavior level BDPs
Computational abstraction: cognitive
architecture
Multiple diagrammatic views to convey pattern
succinctly
Formal ontology of interaction types to express
complex relationships (hierarchical, aspectual,
compositional, etc.) between interacting
patterns

	Behavior Design Patterns:Engineering Human Behavior Representations
	Problem
	Foundations
	Assumptions
	Design Patterns
	Design Pattern example
	“Behavior” Design Patterns (BDPs)
	Classes of BDPs (1)
	Classes of BDPs (2)
	Classes of BDPs (3)
	Potential benefits of behavior level BDPs?
	Describing patterns?
	Patterns in existing HBRs
	Close-air support
	TacAir-Soar analysis
	TacAir-Soar analysis
	Movement behaviors
	Behavior interactions
	Chase-Target pattern
	Air-to-Ground Attack
	Air-to-Ground Attack
	How to use patterns?
	Simple example:Iterator Pattern
	Possible Iterator Variations
	Iterator Pattern Template
	Template continued…
	Current & future work
	Current & future work
	Summary

