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Problem

m Reuse of HBR knowledge representations iIs
difficult

e even when tasks/domains are similar
®m \We recognize as behavior developers that

there are recurring design problems &
solutions

" How do we more easily reuse previous
solutions?
® Focus: Previous designs
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Foundations

® Design Patterns (Gamma, et al)
e Abstractions to address common OO reuse problems
¢ |Independent of specific application domains
e |terator, proxy, factory method, etc...

m Generic Tasks (Chandrasekaran)

e General patterns of problem solving and representation:
Hierarchical classification, hypothesis matching,
knowledge-directed information passing, synthesis by
plan selection and refinement, abductive hypothesis
assembly

= Taxonomy of Human Behaviors (Fineberg)

e Catalogue of human behavior “primitives”:
Sensation, mediation, reaction, interaction
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Assumptions

m Design patterns may not be applicable for
cognitive models
e Architectural dependencies & idiom
e Quantitative human data drives low-level details

m Design patterns appear to be relevant in human
behavior representation

e Focus often more on knowledge level behavior than
Immediate behavior (“psychology”)

e Qualitative/descriptive validation is the norm
e Aggregations (entity vs. individual)
m “Engineering” philosophy
e Define & capture recurrent behavior design patterns

e Use cognitive architectures to guide solution patterns
(psychological constraint)
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Design Patterns

m Reusable software elements that describe a
common problem and solution (Gamma et al.)
e Generally:
¢ 1) pattern name (for communication/reference)
¢ 2) clear definition of the problem
¢+ 3) clear definition of the solution
¢ 4) consequences of using the pattern

e Pattern captures aspects of behavior/structure that are
Invariant, and call out/encapsulate aspects that vary

e DPs language-neutral; details/cost may differ across
languages/architectures

e Specific paradigm (OOP)
e Specific goal (reuse)
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Design Pattern example

= Name: Strategy
" Problem Addressed:
e Need multiple variants of an algorithm
e Have many modules that execute similar algorithms

= Solution:

e Encapsulate a family of related algorithms from the objects that
invoke them. Allows implementation to vary independently
from object

m  Consequences:
e Reduces conditional statements in modules
e |ncreased communication overhead

s Example: different memory management styles, etc.

Strategy pattern is similar to the notion of a generic task
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“Behavior”
Design Patterns (BDPs)

m Patterns that describe common problems and
solutions In building human behavior
representations

= Human behavior representation programming
paradigm (from cognitive architectures):

e Agent must strike balance between reactive and goal-
directed behavior

¢+ Associative control flow
(re-entrant execution is a basic requirement)

e | east-commitment execution
¢ Run-time decision making and conflict resolution
¢ Weak encapsulation

e |arge, (possibly) changing knowledge bases
e Human fidelity constraints

© 2004 Soar Technology, Inc. ¢ 10 Jun 2004+ Slide 7 _I_S SQLTE.ED,!],“JE“



Classes of BDPs (1)

®m Architectural: patterns for underlying
processes, assumptions, constraints

e Pattern matching, automatic subgoaling, etc.

e Cognitive architectures

¢ assume patterns of processing are fixed (or vary
parametrically)

¢ can be viewed as attempts to define collections of
architectural patterns that are sufficient to describe
human behavior
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Classes of BDPs (2)

= Computational patterns: capture and represent

low-level, domain-independent recurring
computations

e |teration (perform f(x) on all objects x with property y)
e Deliberate memory management

e Compute vs. retrieve decisions
® Process annotation

B Similar to (Gamma et al) patterns:

e Abstractions from common problems arising from a
particular language/design paradigm

e May indicate directions for language/architecture
evolution
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Classes of BDPs (3)

m Behavior-level: knowledge, processes,
tasks related to the specific individual and
task being modeled

e Domain Patterns — focus on domain/class-
specific problems/tasks
¢ Examples: Mission (air-to-ground attack), tactical
(maneuver)
e |nterface Patterns — focus on entity interactions

¢ Virtual vehicles, communications interfaces (eg, FIPA-
ACL), perception, proprioception, etc.
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Potential benefits of
behavior level BDPs?

= Provide language neutrality

e Focus on domain-specific (task) patterns, not patterns of
Implementation within a language

e Transfer of design to other platforms

B |mprove understandability
e Concise descriptions of solutions
e Make design elements & decisions explicit
e |ncreased transparency (to developers & users)

m Potential results:
e More reuse

e Devote more effort to novel aspects of behavior
representation

e |mprove capability/investment ratio
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Describing patterns?

» Natural Language
® Diagrams

e UML (State Diagrams, Sequence Diagrams, etc.) Is
standard in OOP Software Engineering, may not have
right primitives; AUML may not be expressive enough

e Bottom line: Multiple diagrammatic views are needed for
many patterns

® | anguage-specific examples

e Multiple language implementations of the same pattern
can help make design trade-offs more explicit

m All are needed to fully capture a pattern for reuse
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Patterns in existing HBRs

m Analysis of TacAir-Soar

e Comprehensive suite of FWA missions and
aircraft: Tactical air combat, close-air support,
refueling, etc.

e Focus: close-air support mission
¢ mission phases, roles, entities, domain concepts
» Methodology

e | ook for generalities, repetition in processes,
structures

e |solate functionality, encapsulate, generalize
e Describe as patterns
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Close-air support

forward air

controllers controller

CAS strike = ground combat
package elements

V=

Execute Missiﬁﬂ

MissiDnPlanmm Launch | |En Rmugﬂ

Indicates a behavior requiring
coordination and teamwork
with other CAS entities

o
© 2004 Soar Technology, Inc. ¢ 10 Jun 2004+ Slide 14 A sﬂﬂ,ﬂﬂ@ﬂuﬂuv




TacAir-Soar analysis

m Assigned individual knowledge representations
Into eight classes:

e Communications: How and when to talk to other agents,
and how to interpret incoming communications

e Missions: Mission-specific behaviors, such as for air-to-
ground missions (CAS) or air-to-air missions (DCA)

Control: How to direct other units to take action
Coordination: How to work with other friendly agents
Flying: How to fly a plane

Navigation: How to decide where to go and how to get
there

e Sjtuational Awareness: How to manage information about
the environment

e Action: Atomic interactions with the simulation platform
®m Are there patterns within the categories?
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TacAir-Soar analysis

m Potential patterns at many different levels of
abstraction:

¢ Mission-level patterns
¢ Air-to-ground attack

e Tactical patterns
¢ Chase-target

e Multi-agent interaction patterns
¢ Directive pattern (command/response)

¢ Patterns adopted from MAS/AOP community
(ACLs, conversation policies)

e |nformation processing patterns
¢ Situation awareness

¢ |nteraction patterns
¢ Vehicle/movement control
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Movement behaviors

Chase-Target Avoid Target
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e
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Behavior interactions

" Many interactions between behaviors/patterns
= Many patterns are cross-cutting (“aspectual™)

® cOmMms Movement
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target targel target
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missile-lar | management |
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| -location | actions
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Chase-Target pattern

Problem: many types of movement
behaviors, each with variations in
unit type, orientation, etc.

Consequences: simplifies movement
behavior; allows one movement base
behavior with variations, rather than

multiple separate types of movement

Structure

=

move-to-
target

| Used By:

Requires: Follow-leader E
P 4

———'-'---—‘-'-———_--_-_-—__‘-\—.

target location E

change- change-

speed orientation

T N

target type
get typ Chase-enemy _ ‘

change- change- change-

\pitch roll headiny

desired profile * - *“

Variations:
e Unit type
e Degrees of Freedom
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Ailr-to-Ground Attack

Ground Attack Pattern
Spatial View

Fhase 2:

Wait for Target Info

Area of
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Attack
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Ailr-to-Ground Attack

Pattern: Ground Attack

Problem: Consequences:

Multiple variations on the ground attack theme tend to create Cleaner separation of ground attack behavior from

a slew of specialized ground attack behaviors. Want to isolate details of situation; can be reused in different mission

the invariants and allow template-based specialization. types (CAS, SEAD) using different parameters, rather
than developing specialized behaviors for each.

Ground Attack [out of weapons/

State Diagr‘am mission complete] | Return-to-
base
[air elements [target \

atCP] _ identified]

Setup /\A Wait-and- | Attack + ROE
Defend + harddeck rul
._ ) ., ) le- arddeck rules

s 4 h.

 N— —a— T+ enemy INTEL
' : + attack tactic

+ known threats * Maintain SA + planned attack routes

+ ingress route * Coordinate with team + planned attack profiles
+ contact info + planned roles with wing Return to

+ CP location | * controller instructions | CcP
+ time on CP

P

?oqrdinates with: Interacts with: Used by: - Variations:
) Wingman * Situation Awareness * Close Air Support * Source of Target Info
" AWACS * Follow-Route * TCT CAP * Enemy unit type
Forward Air Controller * Coordinate with team * Strike * Attack Tactic
* Rules of engagement

s
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How to use patterns?

® |[ndirectly: read the “BDP Catalog”, find
pattern that fit your problem, and use the
design solution to build your own
Implementation

® (more) Directly: Use generative
programming technigues to create
templates for generating solution instances

e Tcl -> Soar
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Simple example:
Ilterator Pattern

®m Purpose: Provide a way to access the
elements of an aggregate sequentially
without exposing its underlying

representation (GOF)
List List
ltem ltem

List List . List .
ltem ltem

I ltem I

m Example: processing elements in a list
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Possible Iterator Variations

m Sequential order pre-determined (list)

m Sequential order not pre-determined, but not
Important (unordered set)

m Sequential order determined as part of processing
(search)

® Examples in HBR:
¢ route following
e |terating over targets
e dealing with messages in priority order
e etc.
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lterator Pattern Template

m Use iterator object to keep track of current element

m Create a new context in which to iterate

e EXxplicit operator for iterating to encapsulate process from
unrelated operators (template)

e Proposal based on matching against existing iterator

e Retraction based on iterator absence

e Use other sub-operators for processing on current element
m User responsible for creating iterator instance (template)
m  Auto-generate iterator destructor (template)

m User responsible for either telling iterator how to find the
next element as part of instantiation (if well defined), or
actually determining the next element as part of processing
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Template continued...

=  Create the iterator structure
(as production RHS):
iterator-constructor \
location 1terator-name \
first-element

m  Base iterator template generator:
iterator-template \

production-base-name \
opname lIhstest rhsset \
iterator-name {next-test NULL}

= Generates 3-4 productions to deal with iteration
over specific structure

External processing
of element...
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Current & future work

m Refine/extend/define notation for behavior
design patterns

e Define “interacts with” subclasses/relationships
¢ Hierarchical
¢ Compositional
¢ Aspectual

e Evaluate/extend pattern definition

e Create additional diagrammatic views
¢ Task priority (potential interruptions)
¢ Communication protocols
¢ Tension: succinctness <--> behavior complexity
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Current & future work

"= Demonstrate (re-)use of patterns in new behavior
systems

= Demonstrate reuse of patterns for other platforms
e | ong-term goal: Platform independent catalogue of BDPs

m Catalog behavior design patterns

m Refine evaluation metrics

¢ \What constitutes a “good” pattern?

¢ Chase-target pattern: psychological relationship between
follow leader and engaging enemy?

e \WWhat are good/best/most effective ways of cataloging/
communicating patterns
" From description to programmability
e Improving encapsulation & interfaces for cognitive archs
e Template support
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Summary

" Demonstrated “behavior design patterns”
are evident in existing HBR systems

e Analysis/review of TAS made many implicit
design patterns evident

m Proposed strawman for behavior level BDPs

e Computational abstraction: cognitive
architecture

e Multiple diagrammatic views to convey pattern
succinctly

e Formal ontology of interaction types to express
complex relationships (hierarchical, aspectual,
compositional, etc.) between interacting
patterns
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