Thinking...

...Inside the box

Behavior Design Patterns:
Engineering
Human Behavior Representations

Glenn Taylor Robert Wray

Soar Workshop 24
10 June 2004

Research sponsored by Defense Advanced Research Projects Agency,
Contract DAAHO1-03-C-R242

n Soar Technolog

Thinking inside the box

© 2004 Soar Technology, Inc. ¢ 10 Jun 2004+ Slide 1 _I_S sgﬂl‘g]-ﬂ]l]'llﬂlgﬂv

https://www.dmso.mil/public/

Problem

m Reuse of HBR knowledge representations iIs
difficult

e even when tasks/domains are similar
®m \We recognize as behavior developers that

there are recurring design problems &
solutions

" How do we more easily reuse previous
solutions?
® Focus: Previous designs

© 2004 Soar Technology, Inc. ¢ 10 Jun 2004+ Slide 2 _I_S sgﬂl‘g]-ﬂ]l]'llﬂlgﬂv

Foundations

® Design Patterns (Gamma, et al)
e Abstractions to address common OO reuse problems
¢ |Independent of specific application domains
e |terator, proxy, factory method, etc...

m Generic Tasks (Chandrasekaran)

e General patterns of problem solving and representation:
Hierarchical classification, hypothesis matching,
knowledge-directed information passing, synthesis by
plan selection and refinement, abductive hypothesis
assembly

= Taxonomy of Human Behaviors (Fineberg)

e Catalogue of human behavior “primitives”:
Sensation, mediation, reaction, interaction

© 2004 Soar Technology, Inc. ¢ 10 Jun 2004+ Slide 3 _I_S sgﬂl‘g]-ﬂ]l]'llﬂlgﬂv

Assumptions

m Design patterns may not be applicable for
cognitive models
e Architectural dependencies & idiom
e Quantitative human data drives low-level details

m Design patterns appear to be relevant in human
behavior representation

e Focus often more on knowledge level behavior than
Immediate behavior (“psychology”)

e Qualitative/descriptive validation is the norm
e Aggregations (entity vs. individual)
m “Engineering” philosophy
e Define & capture recurrent behavior design patterns

e Use cognitive architectures to guide solution patterns
(psychological constraint)

© 2004 Soar Technology, Inc. ¢ 10 Jun 2004+ Slide 4 _I_S s?ﬂﬂfﬁbﬂuﬂw

Design Patterns

m Reusable software elements that describe a
common problem and solution (Gamma et al.)
e Generally:
¢ 1) pattern name (for communication/reference)
¢ 2) clear definition of the problem
¢+ 3) clear definition of the solution
¢ 4) consequences of using the pattern

e Pattern captures aspects of behavior/structure that are
Invariant, and call out/encapsulate aspects that vary

e DPs language-neutral; details/cost may differ across
languages/architectures

e Specific paradigm (OOP)
e Specific goal (reuse)

© 2004 Soar Technology, Inc. ¢ 10 Jun 2004+ Slide 5 _I_S sgﬂl‘g]-ﬂ]l]'llﬂlgﬂv

Design Pattern example

= Name: Strategy
" Problem Addressed:
e Need multiple variants of an algorithm
e Have many modules that execute similar algorithms

= Solution:

e Encapsulate a family of related algorithms from the objects that
invoke them. Allows implementation to vary independently
from object

m Consequences:
e Reduces conditional statements in modules
e |ncreased communication overhead

s Example: different memory management styles, etc.

Strategy pattern is similar to the notion of a generic task

© 2004 Soar Technology, Inc. ¢ 10 Jun 2004+ Slide 6 _I_S sgﬂl‘g]-ﬂ]l]'llﬂlgﬂv

“Behavior”
Design Patterns (BDPs)

m Patterns that describe common problems and
solutions In building human behavior
representations

= Human behavior representation programming
paradigm (from cognitive architectures):

e Agent must strike balance between reactive and goal-
directed behavior

¢+ Associative control flow
(re-entrant execution is a basic requirement)

e | east-commitment execution
¢ Run-time decision making and conflict resolution
¢ Weak encapsulation

e |arge, (possibly) changing knowledge bases
e Human fidelity constraints

© 2004 Soar Technology, Inc. ¢ 10 Jun 2004+ Slide 7 _I_S SQLTE.ED,!],“JE“

Classes of BDPs (1)

®m Architectural: patterns for underlying
processes, assumptions, constraints

e Pattern matching, automatic subgoaling, etc.

e Cognitive architectures

¢ assume patterns of processing are fixed (or vary
parametrically)

¢ can be viewed as attempts to define collections of
architectural patterns that are sufficient to describe
human behavior

© 2004 Soar Technology, Inc. ¢ 10 Jun 2004+ Slide 8 _I_S s?ﬂﬂfﬁbﬂuﬂw

Classes of BDPs (2)

= Computational patterns: capture and represent

low-level, domain-independent recurring
computations

e |teration (perform f(x) on all objects x with property y)
e Deliberate memory management

e Compute vs. retrieve decisions
® Process annotation

B Similar to (Gamma et al) patterns:

e Abstractions from common problems arising from a
particular language/design paradigm

e May indicate directions for language/architecture
evolution

© 2004 Soar Technology, Inc. ¢ 10 Jun 2004+ Slide 9 _I_S s?ﬂﬂfﬁbﬂuﬂw

Classes of BDPs (3)

m Behavior-level: knowledge, processes,
tasks related to the specific individual and
task being modeled

e Domain Patterns — focus on domain/class-
specific problems/tasks
¢ Examples: Mission (air-to-ground attack), tactical
(maneuver)
e |nterface Patterns — focus on entity interactions

¢ Virtual vehicles, communications interfaces (eg, FIPA-
ACL), perception, proprioception, etc.

© 2004 Soar Technology, Inc. # 10 Jun 2004+ Slide 10 _I_S s?ﬂﬂfﬁbﬂuﬂw

Potential benefits of
behavior level BDPs?

= Provide language neutrality

e Focus on domain-specific (task) patterns, not patterns of
Implementation within a language

e Transfer of design to other platforms

B |mprove understandability
e Concise descriptions of solutions
e Make design elements & decisions explicit
e |ncreased transparency (to developers & users)

m Potential results:
e More reuse

e Devote more effort to novel aspects of behavior
representation

e |mprove capability/investment ratio

© 2004 Soar Technology, Inc. ¢ 10 Jun 2004+ Slide 11 I'(. S%LTEH]"I]’[IJEUV

Describing patterns?

» Natural Language
® Diagrams

e UML (State Diagrams, Sequence Diagrams, etc.) Is
standard in OOP Software Engineering, may not have
right primitives; AUML may not be expressive enough

e Bottom line: Multiple diagrammatic views are needed for
many patterns

® | anguage-specific examples

e Multiple language implementations of the same pattern
can help make design trade-offs more explicit

m All are needed to fully capture a pattern for reuse

© 2004 Soar Technology, Inc. ¢ 10 Jun 2004+ Slide 12 f‘(l sgﬂﬂﬂﬁ[‘ﬂﬂjﬂw

Patterns in existing HBRs

m Analysis of TacAir-Soar

e Comprehensive suite of FWA missions and
aircraft: Tactical air combat, close-air support,
refueling, etc.

e Focus: close-air support mission
¢ mission phases, roles, entities, domain concepts
» Methodology

e | ook for generalities, repetition in processes,
structures

e |solate functionality, encapsulate, generalize
e Describe as patterns

© 2004 Soar Technology, Inc. # 10 Jun 2004+ Slide 13 _I_S s?ﬂﬂfﬁbﬂuﬂw

Close-air support

forward air

controllers controller

CAS strike = ground combat
package elements

V=

Execute Missiﬁﬂ

MissiDnPlanmm Launch | |En Rmugﬂ

Indicates a behavior requiring
coordination and teamwork
with other CAS entities

o
© 2004 Soar Technology, Inc. ¢ 10 Jun 2004+ Slide 14 A sﬂﬂ,ﬂﬂ@ﬂuﬂuv

TacAir-Soar analysis

m Assigned individual knowledge representations
Into eight classes:

e Communications: How and when to talk to other agents,
and how to interpret incoming communications

e Missions: Mission-specific behaviors, such as for air-to-
ground missions (CAS) or air-to-air missions (DCA)

Control: How to direct other units to take action
Coordination: How to work with other friendly agents
Flying: How to fly a plane

Navigation: How to decide where to go and how to get
there

e Sjtuational Awareness: How to manage information about
the environment

e Action: Atomic interactions with the simulation platform
®m Are there patterns within the categories?

© 2004 Soar Technology, Inc. # 10 Jun 2004+ Slide 15 _I_S s?ﬂﬂfﬁbﬂuﬂw

TacAir-Soar analysis

m Potential patterns at many different levels of
abstraction:

¢ Mission-level patterns
¢ Air-to-ground attack

e Tactical patterns
¢ Chase-target

e Multi-agent interaction patterns
¢ Directive pattern (command/response)

¢ Patterns adopted from MAS/AOP community
(ACLs, conversation policies)

e |nformation processing patterns
¢ Situation awareness

¢ |nteraction patterns
¢ Vehicle/movement control

© 2004 Soar Technology, Inc. # 10 Jun 2004+ Slide 16 _I_S sgﬂl‘g]-ﬂ]l]'llﬂlgﬂv

Movement behaviors

Chase-Target Avoid Target

| |
J I [|

Chase-static- Chase- Avoid-static- Avoid-moving-
target moving-target farget target

| - | |
. | | | |

ﬂ}l'- route engage- evade- escape- evade- evade-

enemnmy sam-site sam-site enemy missile

C T

Fly-control- achieve-
route proximity

I_‘

achieve-
missile-lar

e
© 2004 Soar Technology, Inc. ¢ 10 Jun 2004+ Slide 17 __‘.(‘ Sggﬂgﬂg[lﬂl]lguv

Behavior interactions

" Many interactions between behaviors/patterns
= Many patterns are cross-cutting (“aspectual™)

® cOmMms Movement
e sjtuational o
arge
awareness o [

| Chase-static- | | Chase- fnowng— Avoid-static- Avoid-moving-
target targel target

orblt ﬂ o engage evade escape evade evade
y enemy sam- S|te sam- S|te enemy mISSIIe
contro achieve '] : . !
ﬂy attack _ - maintain situational S|tuat|ona| '
- route proximit awareness

B — Awareness
missile-lar | management |

- 1

recover-from- maintain-]

. lost-contact | | mental-model contact ||

. | | : _ !
; request- prOJect [maintain |[predict-
| -location | actions

assume-bogey- | |
fired-missile

© 2004 Soar Technology, Inc. # 10 Jun 2004+ Slide 18 _I-ﬂ sggLTgﬂlﬂﬂlguv

Chase-Target pattern

Problem: many types of movement
behaviors, each with variations in
unit type, orientation, etc.

Consequences: simplifies movement
behavior; allows one movement base
behavior with variations, rather than

multiple separate types of movement

Structure

=

move-to-
target

| Used By:

Requires: Follow-leader E
P 4

———'-'---—‘-'-———_--_-_-—__‘-\—.

target location E

change- change-

speed orientation

T N

target type
get typ Chase-enemy _ ‘

change- change- change-

\pitch roll headiny

desired profile * - *“

Variations:
e Unit type
e Degrees of Freedom

© 2004 Soar Technology, Inc. ¢ 10 Jun 2004+ Slide 19

Ay
A2 Sear Technology

Ailr-to-Ground Attack

Ground Attack Pattern
Spatial View

Fhase 2:

Wait for Target Info

Area of
Operations

— = =
4 (ot

Foint

JAN

?Target?

—g —

—

A (Cﬂntrﬂllj
7 7 Point
| -

—

Home
Base

—

IFendezvous

—

Phase 3:
Attack

Initial E'

Point L ﬁ

Control A
Foint

Return 1o
;I Base
’

Retum Lo
Control
Point

1. Plan attack route + profile
2. Begin attack
3. Rendezvous with wing

1. Await target location

1. Fl I Poi : tuati
y to Control Point 2. Maintain situational awareness

© 2004 Soar Technology, Inc. ¢ 10 Jun 2004+ Slide 20

Ay
A2 Sear Technology

Ailr-to-Ground Attack

Pattern: Ground Attack

Problem: Consequences:

Multiple variations on the ground attack theme tend to create Cleaner separation of ground attack behavior from

a slew of specialized ground attack behaviors. Want to isolate details of situation; can be reused in different mission

the invariants and allow template-based specialization. types (CAS, SEAD) using different parameters, rather
than developing specialized behaviors for each.

Ground Attack [out of weapons/

State Diagr‘am mission complete] | Return-to-
base
[air elements [target \

atCP] _ identified]

Setup /\A Wait-and- | Attack + ROE
Defend + harddeck rul
._) .,) le- arddeck rules

s 4 h.

 N— —a— T+ enemy INTEL
' : + attack tactic

+ known threats * Maintain SA + planned attack routes

+ ingress route * Coordinate with team + planned attack profiles
+ contact info + planned roles with wing Return to

+ CP location | * controller instructions | CcP
+ time on CP

P

?oqrdinates with: Interacts with: Used by: - Variations:
) Wingman * Situation Awareness * Close Air Support * Source of Target Info
" AWACS * Follow-Route * TCT CAP * Enemy unit type
Forward Air Controller * Coordinate with team * Strike * Attack Tactic
* Rules of engagement

s
© 2004 Soar Technology, Inc. ¢ 10 Jun 2004+ Slide 21 b(SUﬂrTﬂﬂhﬂUlﬂuv

How to use patterns?

® |[ndirectly: read the “BDP Catalog”, find
pattern that fit your problem, and use the
design solution to build your own
Implementation

® (more) Directly: Use generative
programming technigues to create
templates for generating solution instances

e Tcl -> Soar

© 2004 Soar Technology, Inc. ¢ 10 Jun 2004+ Slide 22 I'(. S%LTE-E[]"I]’[IJEUV

Simple example:
Ilterator Pattern

®m Purpose: Provide a way to access the
elements of an aggregate sequentially
without exposing its underlying

representation (GOF)
List List
ltem ltem

List List . List .
ltem ltem

I ltem I

m Example: processing elements in a list

© 2004 Soar Technology, Inc. # 10 Jun 2004+ Slide 23 _I_ﬂ Sgﬂjﬁﬁ]ﬂﬂlﬂﬂv

Possible Iterator Variations

m Sequential order pre-determined (list)

m Sequential order not pre-determined, but not
Important (unordered set)

m Sequential order determined as part of processing
(search)

® Examples in HBR:
¢ route following
e |terating over targets
e dealing with messages in priority order
e etc.

© 2004 Soar Technology, Inc. ¢ 10 Jun 2004+ Slide 24 _I_S sgﬂl‘}gﬂ]ﬂﬂlﬂﬂv

lterator Pattern Template

m Use iterator object to keep track of current element

m Create a new context in which to iterate

e EXxplicit operator for iterating to encapsulate process from
unrelated operators (template)

e Proposal based on matching against existing iterator

e Retraction based on iterator absence

e Use other sub-operators for processing on current element
m User responsible for creating iterator instance (template)
m Auto-generate iterator destructor (template)

m User responsible for either telling iterator how to find the
next element as part of instantiation (if well defined), or
actually determining the next element as part of processing

© 2004 Soar Technology, Inc. # 10 Jun 2004+ Slide 25 _I_S s?ﬂﬂfﬁbﬂuﬂw

Template continued...

= Create the iterator structure
(as production RHS):
iterator-constructor \
location 1terator-name \
first-element

m Base iterator template generator:
iterator-template \

production-base-name \
opname lIhstest rhsset \
iterator-name {next-test NULL}

= Generates 3-4 productions to deal with iteration
over specific structure

External processing
of element...

© 2004 Soar Technology, Inc. ¢ 10 Jun 2004+ Slide 26

S Suar Tty

Current & future work

m Refine/extend/define notation for behavior
design patterns

e Define “interacts with” subclasses/relationships
¢ Hierarchical
¢ Compositional
¢ Aspectual

e Evaluate/extend pattern definition

e Create additional diagrammatic views
¢ Task priority (potential interruptions)
¢ Communication protocols
¢ Tension: succinctness <--> behavior complexity

© 2004 Soar Technology, Inc. ¢ 10 Jun 2004+ Slide 27 _I_S sgﬂl‘}gﬂ]ﬂﬂlﬂﬂv

Current & future work

"= Demonstrate (re-)use of patterns in new behavior
systems

= Demonstrate reuse of patterns for other platforms
e | ong-term goal: Platform independent catalogue of BDPs

m Catalog behavior design patterns

m Refine evaluation metrics

¢ \What constitutes a “good” pattern?

¢ Chase-target pattern: psychological relationship between
follow leader and engaging enemy?

e \WWhat are good/best/most effective ways of cataloging/
communicating patterns
" From description to programmability
e Improving encapsulation & interfaces for cognitive archs
e Template support

© 2004 Soar Technology, Inc. # 10 Jun 2004+ Slide 28 _I_S s?ﬂﬂfﬁbﬂuﬂw

Summary

" Demonstrated “behavior design patterns”
are evident in existing HBR systems

e Analysis/review of TAS made many implicit
design patterns evident

m Proposed strawman for behavior level BDPs

e Computational abstraction: cognitive
architecture

e Multiple diagrammatic views to convey pattern
succinctly

e Formal ontology of interaction types to express
complex relationships (hierarchical, aspectual,
compositional, etc.) between interacting
patterns

© 2004 Soar Technology, Inc. + 10 Jun 2004+ Slide 29 _I_S s?ﬂﬂfﬁbﬂuﬂw

	Behavior Design Patterns:Engineering Human Behavior Representations
	Problem
	Foundations
	Assumptions
	Design Patterns
	Design Pattern example
	“Behavior” Design Patterns (BDPs)
	Classes of BDPs (1)
	Classes of BDPs (2)
	Classes of BDPs (3)
	Potential benefits of behavior level BDPs?
	Describing patterns?
	Patterns in existing HBRs
	Close-air support
	TacAir-Soar analysis
	TacAir-Soar analysis
	Movement behaviors
	Behavior interactions
	Chase-Target pattern
	Air-to-Ground Attack
	Air-to-Ground Attack
	How to use patterns?
	Simple example:Iterator Pattern
	Possible Iterator Variations
	Iterator Pattern Template
	Template continued…
	Current & future work
	Current & future work
	Summary

