A Polymorphic Cognitive Agent Architecture (PCAA)

Progress toward an Architecture for Cognitive Information Processing

Bob Wray 25th Soar Workshop 15 Jun 2005 Soar Technology

DARPA ACIP PCAA

© 2005 Soar Technology, Inc.

DARPA ACIP Program

- Goal: develop tools to make "cognitive processing" more feasible
- Lockheed Martin ATL team
 Polymorphous Cognitive Agent Architecture
 - ➤ 3 layer architecture:
 - Application
 - Cognitive
 - Agent Virtual Machine/hardware

This talk: Cognitive Layer

Altarum, MAAD, Reservoir Labs, Soar Tech, LM

Cognitive Layer in PCAA

Goals:

- Reduce the complexity of a variety of problems through an efficient combination of
 - Logical reasoning
 - Cached Expertise
 - Distributed simple intelligence
- Provide solutions that are
 - ➤ Efficient
 - Robust
 - Adaptive
 - General
- **Current Applications**
 - Evidence marshalling
 - UAV Mission planning

Cognitive Layer Concept (C3I1)

Human problem-solving involves multiple levels of cognition

DARPA ACIP PCAA

© 2005 Soar Technology, Inc.

Proto Cognitive Level (Swarm)

- Purpose: Simple, distributed intelligence
 - Self organization (e.g., clustering)
 - Distributed classification (e.g., filtering)
- Swarming architecture
 - Handles continuous change in data and problem definition
 - > Highly parallel execution

Fractal structure of problem solving for UAV route planning

DARPA ACIP PCAA

Problem solving approach

Bottom-up reconfiguration

compatibility and

of solution elements

Hierarchical Ant

Clustering for

similarity

ants

Top-down selection of

promising solutions

Swarming ghosts

analogous to foraging

Micro Cognitive Level (ACT-R)

 Purpose: Provide expertisebased inferences

ACT-R

- Evidence marshaling as generalization of expert inferences
 - Represent expert inferences in declarative memory
 - Use associative priming to determine most useful inference(s)
 - Similarity-based generalization of inference to current situation

- Problem solving approach: Efficient application of accumulated expertise
 - Expertise provided by user or developed by macro reasoning
 - Efficiency from highly parallelizable statistical generalization processes

DARPA ACIP PCAA

© 2005 Soar Technology, Inc.

Macro Cognitive Level (Soar)

Soar

- Represents expert deliberation (sort & link facts)
- Use architectural mechanisms to resolve conflicts and integrate disparate knowledge sources
- Approach depends on other cognitions to reduce problem size, make problem tractable
 > e.g., identify 10³ "possibly relevant" items from 10⁸ potential input elements

- Purpose: Apply
 knowledge-based
 inferences to solve
 problem
 - Apply domain knowledge
 - Apply domain general knowledge (e.g. temporal reasoning)
 - Integrate deliberation across multiple knowledge sources
 - Assess relevance of novel assertions for micro cognitive level

Macro Cognitive Level (Soar)

DARPA ACIP PCAA

© 2005 Soar Technology, Inc.

Evidence Marshaling (Soar)

General approach

- Establish premises (micro-cognition)
- Retrieve directly related facts from C3I1 memory
- Generate new inferences (apply knowledge sources)
- Assess relevance of new assertions
 - Evaluation approaches
 - analogical mapping
 - social network analysis
- Augment C3I1 memory with relevant inferences

Problem: Many assertions to generate; which ones will be interesting?

assertions and determine if they enable new links & paths to high interest objects

Example Inference

- Desired Inference: (X rel b) + (X = Y) => (Y rel b)
 > Alias replacing
- Example
 - ▶ 6 + 8 =>6′
 - ♦ 6. Hans Pakes is aboard the Holland Queen
 - ◆ 8. Hans Pakes is an alias for Abu al Masri
 - ♦ 6'. Abu al Masri is aboard Holland Queen
- Proto cognition

Creates clusters to group assertions such as 6 & 8

- Micro cognition
 - If no expertise with this inference, asks Macro cognition for help (think about potential connections)
 - Solution: Results in new knowledge at Micro level (comparable to Soar chunking across cognitions)

Example Soar Inference (Macro)

DARPA ACIP PCAA

© 2005 Soar Technology, Inc.

C3I1 Status

- Proof-ofconcept developed for evidence marshalling task
- Integration & interaction across "cognitions"
 - Simple shared ontology

Message
 exchange

DARPA ACIP PCAA

© 2005 Soar Technology, Inc.

Conclusions & Future Work

- Exciting opportunity to investigate general architectural issues
- Overall approach reduces some of weaknesses of Soar (very large declarative memory)
- (Project also encouraging HW research to make individual cognitions more scalable)

Future work

- Control process
- Problem decomposition (Generic Tasks)
- UAV Mission Planning (demonstrate generality)
- Explore adaptation & learning across cognitive levels

Nuggets & Coal (Soar PoV)

Nuggets

- Much previous Soar research & development applicable to architectural approach (cumulation driver)
- Generalization of architectural ideas from Soar (caching experience in Micro-cognition)
- New Soar tools significantly reduce integration and interoperability costs

Coal

- Lack mature methods for creating and using knowledge components dynamically (packaging research problem)
- Overall approach not consistent with Soar theory (implementation or theory problem?)

