Situation Comprehension and Emotion

Bob Marinier University of Michigan June 2005

Emotions: Appraisal theory

- Evaluate situation along several dimensions
 - Relate situation to current goals
 - Compare situation to expectations
 - Determine causality
 - Determine social acceptability
- Evaluations map onto emotions
 - Example: Highly relevant, predictable, goalconducive situation → Joy

Evaluating from scratch is hard

In general, how do we...

- Relate the situation to current goals?
- Make predictions?
- Determine causality?
- In general, how does one understand what is going on?
 - Soar interprets the environment by applying comprehension operators to specific aspects of an environment it wants to comprehend....What gets produced by executing a comprehension operator is a data structure in the current state that is the comprehension, by virtue of its being interpretable by other parts of Soar in doing other tasks."*

Properties of a general comprehension theory

Incremental

- We perceive situations in pieces, so we need to work with those pieces
- Happens over time
 - Situations unfold as a series of ordered events
- Immediate comprehension*
 - Don't waste time fully utilize this moment
 - May want to respond now
 - Early commitment to an interpretation prevents combinatorial blowup of possibilities
- Ambiguity resolution
 - Commit to an interpretation even if not sure which is correct
 - Repair interpretation if new information indicates previous ambiguity was resolved incorrectly

Previous work: NL-Soar*

- NL-Soar has these properties
 - Incremental: Process one word at a time
 - Happens over time: Words come in sequence
 - Immediate comprehension: Commits to a parse structure
 - Ambiguity resolution: "Snips" previous commitments when current parse fails
- NL-Soar is organized around models
 - Utterance model
 - Situation model
- NL-Soar is about understanding language we want to understand situations

Schema theory

Schema = model

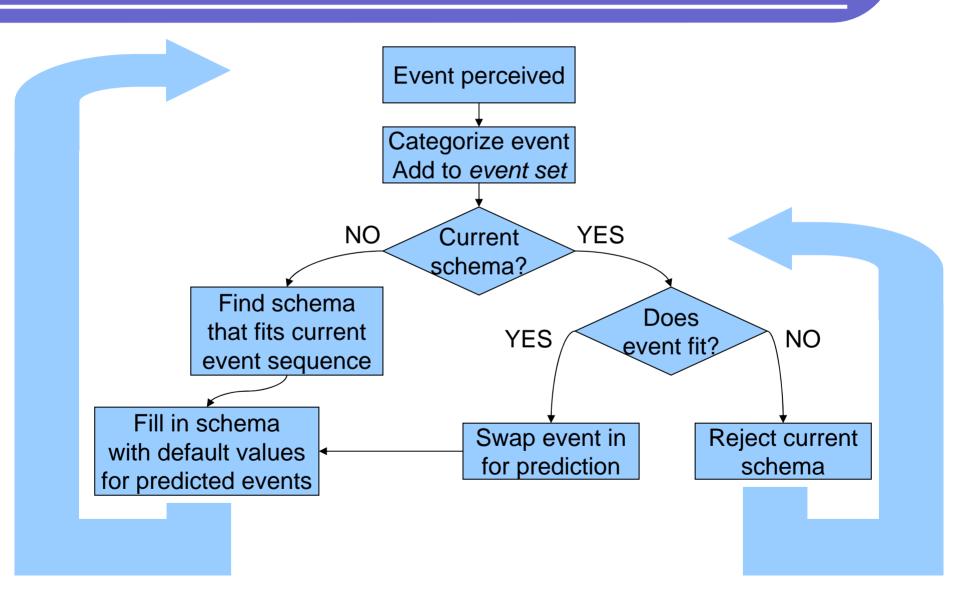
- A schema is knowledge about a concept
 - Data structure representing interpretation
 - Long-term knowledge about the relationships between the concept parts
 - Default values
 - Constraints
- Interpretation = instantiated schema
- Situation schemata are sequences of lowerlevel events which compose higher-level abstract events

Schema example: Structure

- Water balloon toss
 - Throw
 - Body language (happy/angry)
 - Travel
 - Trajectory (near/far)
 - Speed (slow/fast)
 - Catch
 - Success (true/false)
 - Causal agent (catcher/thrower)

Schema example: Predictions

Water balloon toss


- Throw
 - Body language: (happy/angry)
- Travel
 - Trajectory: (near/far)
 - Speed: (slow/fast)
- Catch
 - Success: (true/false)
 - Causal agent: (thrower/catcher)
- If the thrower looks happy, then I expect the balloon's travel to be near and slow.
- If the balloon's travel is near and slow, then I expect the catch to succeed.

Schema example: Causality

Water balloon toss

- Throw
 - Body language: (happy/angry)
- Travel
 - Trajectory: (near/far)
 - Speed: (slow/fast)
- Catch
 - Success: (true/false)
 - Causal agent: (thrower/catcher)
- If the balloon's travel is near and slow and the catcher fails to catch it, then it's the catcher's fault.

Comprehension system

Comprehension system

Incremental

- Handle one event at a time
- Happens over time
 - Events occur in sequence
- Immediate comprehension
 - Early commitment to an interpretation
- Ambiguity resolution
 - Reinterprets if previous commitments fail

Comprehension example

- Event Set
 - Throw
 - Body language: happy
- Current interpretation: Water balloon toss
 - Throw
 - Body language: happy
 - Travel
 - Trajectory: near
 - Speed: slow
 - Catch
 - Success: true
 - Causal agent: thrower

Comprehension example

- Event Set
 - Throw
 - Body language: happy
 - Travel
 - Trajectory: near
 - Speed: slow

- Current interpretation: Water balloon toss
 - Throw
 - Body language: happy
 - Travel
 - Trajectory: near
 - Speed: slow
 - Catch
 - Success: true
 - Causal agent: thrower

Appraisals and interpretation

- Situation interpretation provides us with a framework for generating appraisals
 - Relate interpretation to goals
 - Example: Do I want the outcome I'm predicting?
 - Evaluate the comprehension process
 - Example: Are my predictions accurate?
 - Determine causality
 - Example: What does my schema knowledge say about who's at fault?

Appraisal example

- Event Set
 - Throw
 - Body language: happy
- Current interpretation: Water balloon toss
 - Throw
 - Body language: happy
 - Travel
 - Trajectory: near
 - Speed: slow
 - Catch
 - Success: true
 - Causal agent: thrower

Appraisal example

- Event Set
 - Throw
 - Body language: happy
 - Travel
 - Trajectory: far
 - Speed: fast

- Current interpretation: Water balloon toss
 - Throw
 - Body language: happy
 - Travel
- Trajectory: near
 Discrepancy from
 Speed: slow
 Catch
 - Success: true
 - Causal agent: thrower

Appraisal example

- Event Set
 - Throw
 - Body language: happy
 - Travel
 - Trajectory: far
 - Speed: fast
- Appraisals
 - Discrepancy from expectation
 Surprise

- Current interpretation: Water balloon toss
 - Throw
 - Body language: happy
 - Travel
 - Trajectory: far
- predictions Speed: fast

Catch

- Success: false
- Causal agent: thrower

Other appraisals

- Causality is stored in the schema
 Get for free if understand what's happening
- Relating long-term goals to situation may require a goal representation beyond Soar's goal stack

Nuggets & Coal

Nuggets

- Situation comprehension provides a framework for building agent functions
 - Appraisal generation
 - Goal generation via coping and predictions

Coal

- Learning schemata requires generating appraisals from scratch
 - Event grammar?
- Implementation in very early stages