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‘ Reinforcement Learning

= Reinforcement learning:
Learning how to act so as to maximize the
expected cumulative value of a (numeric)
reward signal

= In Soar terminology, RL learns operator
comparison knowledge




A learning method for low-knowledge
situations

= Non-explanation-based, trial and error learning — RL
does not require any model of operator effects to
Improve action choice.

= Additional requirement — rewards.

= Therefore RL component should be automatic and
general-purpose.

= Ultimately avoid
o Task-specific hand-coding of features
o Hand-decomposed task or reward structure
o Programmer tweaking of learning parameters
o And so on




‘ Q-values

= Q(s,a): the expected discounted sum of
future rewards, given that the agent takes
action a from state s, and follows a particular
policy thereafter
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= Given optimal Q-function, selecting action
with highest Q-value at each state yields
optimal policy




‘ Representing the Q-tfunction

= In Soar-RL, Q-function stored as productions,
testing state and operator, and asserting numeric
preferences.

= Sp{RL-rule
(state <s> ~operator <o> +)

(<s> ~operator <o0> = 0.33231)}

= During decision phase, the Q-value of an operator O
Is taken to be the sum of all numeric preferences

asserted for O.




‘ Learning

= Q-value represented as concatenation:
StateXAction - Set of Features - Value
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Automatic Feature Q-learning
Generation (updating parameters of

linear function)

= Q-learning: Move the value of Q(s,,a,) reward

+ V. -
toward rt Y maxa Q(St+1 ’a)

= Bootstrapping: Update the prediction at one step
using the prediction at the next step.




Current Work-
Automatic Feature generation

= Constructing rule conditions with which to
associate values

= Since values stored with RL rules, some RL
rule must fire for every state-action pair for
bootstrapping to work

= Sufficient distinctions required that agent will
not confuse state-action pairs with
significantly different Q-values

= Want rules that take advantage of
opportunities for generalization




Waterjug Task-

A reasonable set of rules

One for each state-action pair,
for instance-
Sp {RL-0003
g |
(state <s> Mjug <jl1>
~Jug <j2>
~Noperator <o> +)

(<j1> ~volume 5 ~contents 5) [,

(<32> ~volume 3 “contents 0)

(<o> Mname Till Mjug <j2>)
9

(<s> ~operator <o0> = 0)}
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How to generate rule automatically?

= Rule could be built from WM, for instance-
= sp {RL-1
-ri
(state <s> “name waterjug "“jug <jl>
~Jug <J2> ~operator <o4> +
Nsuperstate nil “type state)
(<3J1> ~contents 0 “free 5 ~volume 5)
(<3)2> ~contents 0 “Mree 3 ~volume 3)
(<04> ~name Ti1ll Njug <J2>)
9
(<s> "operator <o04> = 0)}




‘ But we want generalization...




‘ Adaptive representations

= System constructs feature set so that more
distinctions in parts of state-action space
requiring more distinctions.

= Specific-to-general:
Collect instances and cluster according to
similar values.

= General-to-specific:
Add distinctions when area with single
representation appears to contain multiple
values.




General-to-specific
Our most general rules

= Rules made from operator proposals
= Sp {RL-1
:ri
(state <sl> ~name waterjug ~“jug <jl>
~operator <ol> +)
(<J1> ~free 3)
(<01> Mjug <j31> “name fill)
——>
(<sl1l> "operator <o0l> = 0)}

= Only generated when no rule fires for the selected
operator




‘ Specialization —

Example of overgeneral representation
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If jug has contents 3, then pour from jug into other jug.




Predicted QQ-values at the state (3,0)
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Predicted QQ-value for state (3,0)
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How to fix — Add following rule

= If there is a jug with
volume 3 and
contents 3, pour this
jug into the other

Jug.
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How to fix — Add following rule

= If there is a jug with volume 3 and contents 3, pour
this jug into the other jug.

Q-values at (3,0
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‘ Designing a specialization procedure

1. How to decide whether to specialize a given
rule.

2. Given that we have chosen to specialize a
rule, what conditions should we add to the
rule?

3. (optional) In what, if any, cases should a
rule be eliminated?




‘ Question 2 (What conditions to add to a
rule) — Proposed Answer

‘rying an activation-based scheme.

o When an (instantiated) rule R decides to
specialize, it finds the most activated WME,
= (ID ATTR VALUE).

o Traces upward through WM, to find a shortest
path from ID to some identifier in the rule’s
iInstantiation

o w and the WMEs in the trace add themselves to
the conditions in R to form a new rule R’

o If R is not a duplicate of some existing rule, R is
added to the Rete (without removing R).




‘ Question 1 (Should a given rule be
specialized) — Proposed answer

= Track weights (numeric preferences) of rules.

= Weights should converge when rules
sufficient, so stop specializing when weights
stop moving.




‘ Tracking weights of rule RI.-3
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# steps in run
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# rules
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‘ Conclusions

= Nuggets — Did work (at least on Waterjug)
That is, came to follow the optimal policy.

= Coal — Makes too many rules
1. Specializes rules that don’'t need specialization.

2. Specializations not always useful, since chosen
heuristically

3. WIll try to explain non-determinism by making
rules.
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