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Reinforcement Learning

Reinforcement learning:
Learning how to act so as to maximize the 
expected cumulative value of a (numeric) 
reward signal
In Soar terminology, RL learns operator 
comparison knowledge



A learning method for low-knowledge 
situations

Non-explanation-based, trial and error learning – RL 
does not require any model of operator effects to 
improve action choice.
Additional requirement – rewards.
Therefore RL component should be automatic and 
general-purpose.
Ultimately avoid

Task-specific hand-coding of features
Hand-decomposed task or reward structure
Programmer tweaking of learning parameters
And so on



Q-values
Q(s,a): the expected discounted sum of 
future rewards, given that the agent takes 
action a from state s, and follows a particular 
policy thereafter

Given optimal Q-function, selecting action 
with highest Q-value at each state yields 
optimal policy

state action state action state action
Etc.

reward λ*reward
action



Representing the Q-function

In Soar-RL, Q-function stored as productions, 
testing state and operator, and asserting numeric 
preferences.
Sp{RL-rule
(state <s> ^operator <o> +)

…

(<s> ^operator <o> = 0.33231)}
During decision phase, the Q-value of an operator O
is taken to be the sum of all numeric preferences 
asserted for O.



Learning

Q-value represented as concatenation:
StateXAction Set of Features Value 

Q-learning: Move the value of Q(st,at) 
toward rt + γ*maxa Q(st+1,a).

Bootstrapping: Update the prediction at one step 
using the prediction at the next step.

Automatic Feature 
Generation

Q-learning
(updating parameters of 

linear function)

state action state

reward



Current Work-
Automatic Feature generation

Constructing rule conditions with which to 
associate values
Since values stored with RL rules, some RL 
rule must fire for every state-action pair for 
bootstrapping to work
Sufficient distinctions required that agent will 
not confuse state-action pairs with 
significantly different Q-values
Want rules that take advantage of 
opportunities for generalization



Waterjug Task-
A reasonable set of rules
One for each state-action pair,  
for instance-
Sp {RL-0003
:rl
(state <s> ^jug <j1> 

^jug <j2>
^operator <o> +)

(<j1> ^volume 5 ^contents 5)
(<j2> ^volume 3 ^contents 0) 
(<o> ^name fill ^jug <j2>)

(<s> ^operator <o> = 0)}
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How to generate rule automatically?
Rule could be built from WM, for instance-
sp {RL-1
:rl
(state <s> ^name waterjug ^jug <j1> 

^jug <j2> ^operator <o4> + 
^superstate nil ^type state)

(<j1> ^contents 0 ^free 5 ^volume 5)
(<j2> ^contents 0 ^free 3 ^volume 3)
(<o4> ^name fill ^jug <j2>)

(<s> ^operator <o4> = 0)}



But we want generalization…
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Adaptive representations

System constructs feature set so that more 
distinctions in parts of state-action space 
requiring more distinctions.
Specific-to-general:
Collect instances and cluster according to 
similar values.
General-to-specific:
Add distinctions when area with single 
representation appears to contain multiple 
values.



General-to-specific
Our most general rules

Rules made from operator proposals
Sp {RL-1
:rl
(state <s1> ^name waterjug ^jug <j1> 

^operator <o1> +)
(<j1> ^free 3)
(<o1> ^jug <j1> ^name fill)
-->
(<s1> ^operator <o1> = 0)}

Only generated when no rule fires for the selected 
operator
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If jug has contents 3, then pour from jug into other jug.

Specialization –
Example of overgeneral representation
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Predicted Q-values at the state (3,0)
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Predicted Q-value for state (3,0)
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How to fix – Add following rule

If there is a jug with 
volume 3 and 
contents 3, pour this 
jug into the other 
jug.
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How to fix – Add following rule
If there is a jug with volume 3 and contents 3, pour 
this jug into the other jug.

Q-values at (3,0)
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Designing a specialization procedure

1. How to decide whether to specialize a given 
rule.

2. Given that we have chosen to specialize a 
rule, what conditions should we add to the 
rule?

3. (optional) In what, if any, cases should a 
rule be eliminated?



Question 2 (What conditions to add to a 
rule) – Proposed Answer 

Trying an activation-based scheme.
When an (instantiated) rule R decides to 
specialize, it finds the most activated WME, 
w = (ID ATTR VALUE).
Traces upward through WM, to find a shortest 
path from ID to some identifier in the rule’s 
instantiation
w and the WMEs in the trace add themselves to 
the conditions in R to form a new rule R’
If R’ is not a duplicate of some existing rule, R’ is 
added to the Rete (without removing R).



Question 1 (Should a given rule be 
specialized) – Proposed answer

Track weights (numeric preferences) of rules.
Weights should converge when rules 
sufficient, so stop specializing when weights 
stop moving.



Tracking weights of rule RL-3
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# steps in run
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Conclusions
Nuggets – Did work (at least on Waterjug)
That is, came to follow the optimal policy. 
Coal – Makes too many rules

1. Specializes rules that don’t need specialization.
2. Specializations not always useful, since chosen 

heuristically
3. Will try to explain non-determinism by making 

rules.
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