
Soar-RL: Reinforcement
Learning and Soar

Shelley Nason

Reinforcement Learning

Reinforcement learning:
Learning how to act so as to maximize the
expected cumulative value of a (numeric)
reward signal
In Soar terminology, RL learns operator
comparison knowledge

A learning method for low-knowledge
situations

Non-explanation-based, trial and error learning – RL
does not require any model of operator effects to
improve action choice.
Additional requirement – rewards.
Therefore RL component should be automatic and
general-purpose.
Ultimately avoid

Task-specific hand-coding of features
Hand-decomposed task or reward structure
Programmer tweaking of learning parameters
And so on

Q-values
Q(s,a): the expected discounted sum of
future rewards, given that the agent takes
action a from state s, and follows a particular
policy thereafter

Given optimal Q-function, selecting action
with highest Q-value at each state yields
optimal policy

state action state action state action
Etc.

reward λ*reward
action

Representing the Q-function

In Soar-RL, Q-function stored as productions,
testing state and operator, and asserting numeric
preferences.
Sp{RL-rule
(state <s> ^operator <o> +)

…

(<s> ^operator <o> = 0.33231)}
During decision phase, the Q-value of an operator O
is taken to be the sum of all numeric preferences
asserted for O.

Learning

Q-value represented as concatenation:
StateXAction Set of Features Value

Q-learning: Move the value of Q(st,at)
toward rt + γ*maxa Q(st+1,a).

Bootstrapping: Update the prediction at one step
using the prediction at the next step.

Automatic Feature
Generation

Q-learning
(updating parameters of

linear function)

state action state

reward

Current Work-
Automatic Feature generation

Constructing rule conditions with which to
associate values
Since values stored with RL rules, some RL
rule must fire for every state-action pair for
bootstrapping to work
Sufficient distinctions required that agent will
not confuse state-action pairs with
significantly different Q-values
Want rules that take advantage of
opportunities for generalization

Waterjug Task-
A reasonable set of rules
One for each state-action pair,
for instance-
Sp {RL-0003
:rl
(state <s> ^jug <j1>

^jug <j2>
^operator <o> +)

(<j1> ^volume 5 ^contents 5)
(<j2> ^volume 3 ^contents 0)
(<o> ^name fill ^jug <j2>)

(<s> ^operator <o> = 0)}

46 RL rules

+1

-1

0,00,0

0,30,3

3,03,0

3,33,3

5,15,1

0,10,1

1,01,0
1,31,34,04,0

4,34,3

5,25,2

0,20,2

2,02,0

2,32,3

5,05,0

5,35,3

How to generate rule automatically?
Rule could be built from WM, for instance-
sp {RL-1
:rl
(state <s> ^name waterjug ^jug <j1>

^jug <j2> ^operator <o4> +
^superstate nil ^type state)

(<j1> ^contents 0 ^free 5 ^volume 5)
(<j2> ^contents 0 ^free 3 ^volume 3)
(<o4> ^name fill ^jug <j2>)

(<s> ^operator <o4> = 0)}

But we want generalization…
0,0

0,3

3,0

3,3

5,1

0,1

1,0
1,34,0

4,3

5,2

0,2

2,0

2,3

5,0

5,3

+1

-1

Adaptive representations

System constructs feature set so that more
distinctions in parts of state-action space
requiring more distinctions.
Specific-to-general:
Collect instances and cluster according to
similar values.
General-to-specific:
Add distinctions when area with single
representation appears to contain multiple
values.

General-to-specific
Our most general rules

Rules made from operator proposals
Sp {RL-1
:rl
(state <s1> ^name waterjug ^jug <j1>

^operator <o1> +)
(<j1> ^free 3)
(<o1> ^jug <j1> ^name fill)
-->
(<s1> ^operator <o1> = 0)}

Only generated when no rule fires for the selected
operator

0,0

0,3

3,0

3,3

5,1

0,1

1,0
1,34,0

4,3

5,2

0,2

2,0

2,3

5,0

5,3

If jug has contents 3, then pour from jug into other jug.

Specialization –
Example of overgeneral representation

+1

-1

Predicted Q-values at the state (3,0)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 3 4 5 6 7 8 9 10

Update #

Q
-v
al
ue

3050
3000
3003
3033

Goal achieved Goal achieved

Predicted Q-value for state (3,0)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 86 171 256 341 426 511 596 681 766 851 936 1021 1106 1191 1276 1361 1446 1531 1616 1701 1786 1871 1956 2041

Update #

Q
-v

al
ue

3050
3000
3003
3033

How to fix – Add following rule

If there is a jug with
volume 3 and
contents 3, pour this
jug into the other
jug.

0,00,0

0,30,3

3,03,0

3,33,3

5,15,1

0,10,1

1,01,0
1,31,34,04,0

4,34,3

5,25,2

0,20,2

2,02,0

2,32,3

5,05,0

5,35,3

How to fix – Add following rule
If there is a jug with volume 3 and contents 3, pour
this jug into the other jug.

Q-values at (3,0)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127 133 139 145 151 157 163 169 175

3050
3000
3003
3033

Designing a specialization procedure

1. How to decide whether to specialize a given
rule.

2. Given that we have chosen to specialize a
rule, what conditions should we add to the
rule?

3. (optional) In what, if any, cases should a
rule be eliminated?

Question 2 (What conditions to add to a
rule) – Proposed Answer

Trying an activation-based scheme.
When an (instantiated) rule R decides to
specialize, it finds the most activated WME,
w = (ID ATTR VALUE).
Traces upward through WM, to find a shortest
path from ID to some identifier in the rule’s
instantiation
w and the WMEs in the trace add themselves to
the conditions in R to form a new rule R’
If R’ is not a duplicate of some existing rule, R’ is
added to the Rete (without removing R).

Question 1 (Should a given rule be
specialized) – Proposed answer

Track weights (numeric preferences) of rules.
Weights should converge when rules
sufficient, so stop specializing when weights
stop moving.

Tracking weights of rule RL-3

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1 18 35 52 69 86 103 120 137 154 171 188 205 222 239 256 273 290 307 324 341 358 375 392 409 426 443 460 477 494 511

steps in run

steps in run

0

100

200

300

400

500

600

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

Run #

st

ep
s

rules

Total # RL rules by run

0

10

20

30

40

50

60

70

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Run #

ru

le
s

Conclusions
Nuggets – Did work (at least on Waterjug)
That is, came to follow the optimal policy.
Coal – Makes too many rules

1. Specializes rules that don’t need specialization.
2. Specializations not always useful, since chosen

heuristically
3. Will try to explain non-determinism by making

rules.

	Soar-RL: Reinforcement Learning and Soar
	Reinforcement Learning
	A learning method for low-knowledge situations
	Q-values
	Representing the Q-function
	Learning
	Current Work-�Automatic Feature generation
	Waterjug Task-�A reasonable set of rules
	How to generate rule automatically?
	But we want generalization…
	Adaptive representations
	General-to-specific�Our most general rules
	Specialization –�Example of overgeneral representation
	Predicted Q-values at the state (3,0)
	Predicted Q-value for state (3,0)
	How to fix – Add following rule
	How to fix – Add following rule
	Designing a specialization procedure
	Question 2 (What conditions to add to a rule) – Proposed Answer �
	Question 1 (Should a given rule be specialized) – Proposed answer
	Tracking weights of rule RL-3
	# steps in run
	# rules
	Conclusions

