
25 May 2006

www.soartech.com

SoarML: A Graphical Modeling
Language for Agents

Glenn Taylor, Jacob Crossman
glenn@soartech.com , jcrossman@soartech.com

25 May 2006 | © 2005 Soar Technology, Inc. | Slid e 2

What is SoarML?

� A visual language for representing single agent designs
• Based roughly on the Prometheus agent design methodology
• Customized for human behavior modeling

� Initially developed as part of HLSR effort
• Iteratively improved over two years

� Allows code/architecture independent descriptions of an agent’s
behavior
• In general, is NOT specific to Soar

• Was used initially to document HLSR designs

� Used for a several Soar Technology systems
• Adversarial reasoning module
• Indirect Fire (IF)-Soar

• Deontics additions to Command and Control

• AutoATC

25 May 2006 | © 2005 Soar Technology, Inc. | Slid e 3

Motivation for a Modeling Language for Agents

� Promotes High-level design
• Almost always better to think through design before coding
• Text and code are not always best ways to encode designs
• A modeling provides constructs that map to design concepts and

ignore low-level details

� Communication to Management
• PI needs a way to express/understand what is going on in an agent

without looking at code
• Customers sometimes need design documentation or key

algorithms/processes explained

� Communication within a development team
• Understanding what is happening in a Soar program is hard
• Understanding is easier when the high-level concept is clear before

looking at the code

25 May 2006 | © 2005 Soar Technology, Inc. | Slid e 4

Another Modeling Language?

� Others exist: Why invent our own?
• Existing methods: OO UML, AUML, Prometheus

• But:
• Most agent MLs focus on multi-agent aspects, little detail at the

individual agent level
• None capture cognitive architecture aspects (goals, truth

maintenance, deliberate consideration, preferences, etc.)
• In many cases UML is helpful to cover other areas; SoarML focus is

on areas UML doesn’t cover well for agents

25 May 2006 | © 2005 Soar Technology, Inc. | Slid e 5

Graphical Design Language Key

25 May 2006 | © 2005 Soar Technology, Inc. | Slid e 6

Static Structure Diagram Examples

� Description
• Representation of declarative

memory’s structure

• Consistent with OO UML
specifications

• Tagging separates process-
centric data (usually only
shown in process diagrams)

� Notes
• Can be used standalone or as

part of process diagrams

• Soar doesn’t really directly
support structures or
inheritance

25 May 2006 | © 2005 Soar Technology, Inc. | Slid e 7

Knowledge Structure for Indirect Fire
mission-

collection

if-mission

observer: string
method-of-control

fire-constraint: fire-constraint-enum

requires-spash: bool

method-of-

engagement

Described in separate

diagram

maintenance

mission-completed: bool

required-info-known: bool

asset-selected: asset

fire-control

rounds-complete: bool

time-to-say-rounds-complete: bool

basic-authentication

expected-response: string

response: string

valid: bool

invalid: bool

location

text: string (whole location)

units: location-units-enum

loc-value-

structure

prefix: string

decimal: integer

target-

description

number: integer

protection: protection-enum

type: target-type-enum

method-of-engagement

method-of-fire-control

authentication

target-descriptiontarget-location

value

mission

achieve-if-

mission

top-state

missions

1

1

1

adjustment-to

mission

0.1

0.1

0.1

0.1

*

1

direction

units: direction-units-enum

value: integer

direction
0.1

mission-prep

info-sufficient: bool

1

challenge-

authentication

challenge: string

transmission-

authentication

25 May 2006 | © 2005 Soar Technology, Inc. | Slid e 8

Goals and Goal Hierarchies

� Description
• Represent goal hierarchies
• Supports forests or stacks

• Does not require any specific
Soar implementation (e.g. using
impasses or top-state goals)

• Can augment with “met”
condition: a production that marks
the goal “achieved”

� Notes
• Can be used to show goal forest

or connection to goals in process
diagrams

25 May 2006 | © 2005 Soar Technology, Inc. | Slid e 9

Goal Forest for Indirect Fire

achieve-if-mission

tac-callsign: string

old-missions: mission-set

adjustment-missions: mission-set

requirements: mission-requirements

achieve-

create-mission

achieve-get-

fire-location

achieve-

get-method-

of-control

achieve-get-

method-of-

engagement

achieve-get-

target-

description

achieve-get-

authentication

achieve-get-

direction

achieve-

prepare-

adjust-fire-

mission

achieve-set-

fire-param achieve-fire

achieve-ack-

mission-

request

achieve-make-

mission-

adjustment

achieve-ack-

mission-

request

achieve-

create-

goal-for-fire-

adjustment

achieve-

create-mission

maintenance

created-based-on: {goal}

mission-completed: bool

required-info-known: bool

mission-initially-prepared: bool

fire-control

round-to-fire: {round}

round-to-track: {round}

firing-round: int

achieve-

comm-

preformatted-

msg

Used to create the

achieve-adjust-fire goal

Used to communicate

replies

if-mission

known-parameters

requested-unit-name: string

locate-method: locate-method-enum

trans-auth: {basic-authorization}
tags.known-

parameters

0..1

Known parameters holds mission

parameters that were sent by the

Forward Observer during the initial

communication that creates the

message. It resides in the tags of

the goal.

mission

1

25 May 2006 | © 2005 Soar Technology, Inc. | Slid e 10

Process Diagram Examples

� Description
• Represent processes: sets of

related operators in Soar

• Integrates static structure,
goals, operators, and
preferences

• Key productions can be
highlighted

• Includes key memory changes
and trigger conditions

� Notes
• Typically processed are

documented to the operator
level

25 May 2006 | © 2005 Soar Technology, Inc. | Slid e 11

The Firing Process for Indirect Fire

25 May 2006 | © 2005 Soar Technology, Inc. | Slid e 12

When/How to Use

� Documenting Design Concepts
• Purpose:

• construct and analyze the framework for an agent’s behavior
• understand major behavior interactions and knowledge structures

• Guidelines
• Most effective early in a project
• Focus on major objects, processes, and relationships
• Keep abstract: implementation will refine and suggest changes

� Document Existing Systems
• Purpose:

• Provide an overview of system for maintenance team
• Provide customer/management with technical details

• Guidelines
• Most effective late in development cycle after details solidify
• Focus on key patterns of behavior and concepts to understand how the agent

behaves and how it can be modified
• Drill down to moderate levels of detail (e.g. provide more firing conditions and

knowledge structure details)

25 May 2006 | © 2005 Soar Technology, Inc. | Slid e 13

Nuggets/Coal

Nuggets

� Useful for design
documentation and
presentations

� Being used on several
projects

� A good way to visually
inspect design for
flaws/commonalities

Coal

� Hard to get some
engineers to design and
document

� Only a few people using it
regularly

� Doesn’t address multi-
agent processes (other
MLs might cover this
sufficiently)

25 May 2006 | © 2005 Soar Technology, Inc. | Slid e 14

References

� For Visio Stencil, email Glenn or Jacob
� Prometheus

Padgham, L. and Winikoff, M., Prometheus: A Methodology for Developing Intelligent
Agents, Proceedings of the Third International Workshop on AgentOriented
Software Engineering, at AAMAS 2002. July, 2002, Bologna, Italy

http://www.cs.rmit.edu.au/agents/prometheus/

Questions?

