BICA: Biologically-Inspired Cognitive Architecture

John Laird 26th Soar Workshop

Major New DARPA Project

- Goal: Capture the Magic of the Human Mind
 - Look beyond traditional AI
 - Computation and Psychology: Cognitive Architecture
 - Biology: Brain Computation
- Programmatics
 - Phase I: 13 months, started in October 2005
 - A. Cognitive Architectures (4)
 - B. Biologically-based Computation (8)
 - C. Evaluation (1)
 - D. Basic Research (3-4)
 - Phase II: 4-5 years, starting in ~March 2007
 - 2-3 (Big) Groups

Evaluation (Yearly)

- Cognitive Decathlon (details still up in the air)
 - Psychology Experiments Across the Frontiers of Cognition
 - Functional Integration, Flexibility, Metacognition, Social Embeddedness
 - Embedded within same environment as challenge problems
- Challenge Problems
 - Simulated robot embedded complex environment
 - Find IEDs in a (hot, dry, dusty) urban environment
- Emphasizing
 - Learning, learning, learning,
 - Vision, vision, vision,
 - Language, language

Four Possible Approaches

- 1. Cognitive architectures with
 - a. added abstract biologically-inspired functions
 - b. added perceptual-motor inputs and outputs
 - c. biologically-inspired module implementation
- 2. Biological architectures, cognitively constrained

1a. CA with added abstract biologically-inspired functions

- Abstract functionality e.g., reinforcement learning, emotion
- But no direct connection to underlying computational process

The Future for Soar-style Cognitive Architectures

- Generate coherent, purposeful behavior across a wide variety of tasks
- Use many sources and types of knowledge
 - Perception, personal history, facts, abstractions, skills, models, ...
 - Gained by experience, observation, communication, and programming
 - Are immediately taskable
- Combine knowledge in novel ways to generate novel behavior
 - Not a slave to experience or current situation
 - Can use abstraction, hypothetical situations, internal simulation
- In real time using conventional computational hardware

But unable to achieve *wild learning*:

- ubiquitous automatic learning of unexpected types of regularities
- in noisy, feature-rich environments
- that combine with previously learned concepts and relations
- that give rise to hierarchies of new symbols, concepts, and relations
- that lead to prediction, anticipation, comprehension, ...

1b. CA with added perceptual-motor I/O

- Brain-based computation for perception & motor control
- Cognitive architecture remains essentially unchanged

1c. CA with biologically-inspired module implementation

- Brain-based computation for existing CA components
- Retains overall structure of cognitive architecture

2. Biological architecture, cognitively constrained

- New architecture; biologically derived ullet
- Cognitive functions emerge from component interactions

nested sequences of clusters

Nuggets and Coal

- Nuggets:
 - *Chance of a lifetime* to explore integration of brain-based computation and cognitive architecture.
- Coal
 - Incredible amount of work
 - Synthesizing different computational approaches
 - Managing large group across many institutions
 - Developing/Engineering tasks and agents