Hierarchical Reinforcement
Learning and Soar

Shelley Nason
Soar Workshop 2006

Soar-RL: Soar with an architectural
RL mechanism

 Reinforcement learning:

Learning how to act so as to maximize the
expected cumulative value of a (numeric) reward
signal

e In Soar terminology, RL learns operator
comparison knowledge

e Uses:

— Learning without model of operator effects
— Learning in nondeterministic domains

— Learning in non-goal-based tasks

 Limitation of old work:
RL incompatible with Soar impasses

RL and Soar impasses

e Learning impasses (i.e., tie impasse)
— A place for RL? Interesting question.
— Not what this talk is about
* Michigan-style goal-stack (op no-change)
— Hierarchical task decomposition
-> Hierarchical RL
— Hierarchical RL: RL with temporally-extended actions,
» Actions of variable timespan

» Actions whose expected reward, timespan, and
next state depend on subtask policy

— Impassed operator = temporally-extended action

Example Hierarchical
Task: Taxi Domain

* A higher-level task: Navigate to G

A lower-level task (primitive action): Move East

Taxi-Task
\
Get Put
AN
Pickup NavigateTo(x) Putdown
Mov;/ M (;'ve I\;iove Move
South East North West

Hierarchical RL: NavigateTo(G)
Higher-level operator | v

Move Move Move Move
South East North West

* Higher-level operator (i.e., NavigateTo(G))
— Treated as temporally extended action.

— Value includes:
» Rewards received while operator selected

» Value of next state, discounted by length of time operator was
selected

f1 + A*T, + A2*r, + A3*r, + A**Pred(Putdown)

S$1 NavTo(G) NavTo(G) NavTo(G) NavTo(G) Putdown

S2 MoveEast MoveNorth

NavigateTo(G)

Lower-level operator | move || Move || Mov
South East North

Hierarchical RL: T] }

Move
West

* Lower-level operators (i.e., MoveEast)
— Learning in subtask - try to divorce subtask

value function from context

« Subtask value function does not predict beyond
end of subtask

» Task-specific reward for subtask end state

S$1 NavTo(G) NavTo(G) NavTo(G) NavTo(G) Putdown

S2 MoveEast MoveNorth
2
r, + A*Pred(MoveNorth)

4 [R ‘ G
[]] 3 S
What is gained?)
1
e Faster learning in single task 0 QI
— More immediate feedback since rewards 0 1 2 4
received by end of subtask
Flat vs. Hierarchical RL — One passenger taxi task
250 (average over 10 trials)
250 - r
Vv

Steps to complete task

—a— Hier RL

150 \\/

100 +

50

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Number of training runs

Steps to complete task

210

160

i
[N
o

)]
o

10

2
Transfer of subtask policy between higher-level i
tasks o
. . . olY B
— Made possible by generalizing away higher-level
context in subtask value functions U S
Untrained vs. Trained RL — Transfer one-passenger taxi task
(average over 10 trials)
\ — Untrained
\/ﬂ\ —— Trained
8

-40

Number of training runs

Learning to choose among high-

level operators
* The task:

— 5 passengers with various locations,
destinations

— Max of 2 taxi occupants
— Learn the shortest path
e Decision-making:
— Using learned policies for navigate
— Select among Get(Pass;) & Put(Pass,) tasks

* Unhappy result — Convergence to non-optimal
policies

5-passenger taxi task results

e Optimal policy — 61 steps

* |In 5 trials converged to policies of length 75, 87,

69, 86, and 78
Optimal
Jill, Franklin Jack
Rose Franklin

S = N W b

Rose Muriel

Muriel, Jack Jill

Best Achieved

Jill, Franklin Jack
Rose Franklin
4
3
2
1
0
Rose Mhuriel 10
Muriel, Jack Jill

5-passenger taxi task —
What went wrong? Insufficient exploration

The Good — Estimated values for the converged-upon policy
accurate

The Bad — Exploration:

Experimental exploration strategy in which exploration probability
decreases with visits to state

— Trr]\e Good — Automatically handles exploration - exploitation
shift

» Useful when different subtasks trained to varying degrees

« Useful when different levels of hierarchy trained to varying degrees
— The Bad — Lacks sufficient subtlety

« Exploration in earlier states must continue longer than in later states

« Exploration at higher levels of hierarchy must continue longer than
at lower levels

Exploration must improve before attempts to learn simultaneously at
multiple levels of the hierarchy — which is possible in theory

11

Nuggets & Coal

* Nuggets e Coal
— Using Soar’s operator — Relies on impasses for
no-change impasses task decomposition
for hierarchical task — Exploration strategies
decomposition insufficient

provides a nice
structure for
Implementing
established
hierarchical RL ideas

— Soar-RL rewards
difficult to use —
particularly making
rewards appear right
before a subgoal
retracts

12

