
Hierarchical Reinforcement 
Learning and Soar

Shelley Nason
Soar Workshop 2006



2

Soar-RL: Soar with an architectural 
RL mechanism

• Reinforcement learning:
Learning how to act so as to maximize the 
expected cumulative value of a (numeric) reward 
signal

• In Soar terminology, RL learns operator 
comparison knowledge

• Uses:
– Learning without model of operator effects
– Learning in nondeterministic domains
– Learning in non-goal-based tasks

• Limitation of old work:
RL incompatible with Soar impasses



3

RL and Soar impasses
• Learning impasses (i.e., tie impasse)

– A place for RL? Interesting question.
– Not what this talk is about

• Michigan-style goal-stack (op no-change)
– Hierarchical task decomposition 

� Hierarchical RL
– Hierarchical RL: RL with temporally-extended actions,

• Actions of variable timespan
• Actions whose expected reward, timespan, and 

next state depend on subtask policy
– Impassed operator � temporally-extended action



4

Example Hierarchical 
Task: Taxi Domain

Taxi-Task

Get Put

Pickup PutdownNavigateTo(x)

Move
South

Move
North

Move
East

Move
West

• A higher-level task: Navigate to G

• A lower-level task (primitive action): Move East



5

Hierarchical RL: 
Higher-level operator

• Higher-level operator (i.e., NavigateTo(G)) 
– Treated as temporally extended action.
– Value includes:

• Rewards received while operator selected
• Value of next state, discounted by length of time operator was 

selected

NavigateTo(G)

Move
South

Move
North

Move
East

Move
West

S1 NavTo(G) NavTo(G)

S2

NavTo(G) NavTo(G)

MoveEast MoveNorth

Putdown

r1 + λ*r2 + λ2*r3 + λ3*r4 + λ4*Pred(Putdown)



6

Hierarchical RL:
Lower-level operator

• Lower-level operators (i.e., MoveEast)
– Learning in subtask - try to divorce subtask 

value function from context
• Subtask value function does not predict beyond 

end of subtask 
• Task-specific reward for subtask end state

NavigateTo(G)

Move
South

Move
North

Move
East

Move
West

S1 NavTo(G) NavTo(G)

S2

NavTo(G) NavTo(G)

MoveEast MoveNorth

Putdown

r1 + λ*Pred(MoveNorth)
r2



7

What is gained?

• Faster learning in single task
– More immediate feedback since rewards 

received by end of subtask

0

50

100

150

200

250

300

350

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Number of training runs

S
te

ps
 to

 c
o
m

p
le

te
 t
as

k

Flat RL

Hier RL

Flat vs. Hierarchical RL – One passenger taxi task

(average over 10 trials)



8-40

10

60

110

160

210

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Number of training runs

S
te

p
s 

to
 c

o
m

p
le

te
 t
as

k

What is gained?
• Transfer of subtask policy between higher-level 

tasks
– Made possible by generalizing away higher-level 

context in subtask value functions

Untrained

Trained

Untrained vs. Trained RL – Transfer one-passenger taxi task

(average over 10 trials)



9

Learning to choose among high-
level operators

• The task:

– 5 passengers with various locations, 
destinations

– Max of 2 taxi occupants
– Learn the shortest path

• Decision-making:

– Using learned policies for navigate
– Select among Get(Passi) & Put(Passi) tasks

• Unhappy result – Convergence to non-optimal 
policies



10

5-passenger taxi task results
• Optimal policy – 61 steps
• In 5 trials converged to policies of length 75, 87, 

69, 86, and 78

Jill, Franklin

Rose

Jack

Franklin

Rose

Muriel, Jack

Muriel

Jill

Jill, Franklin

Rose

Jack

Franklin

Rose

Muriel, Jack

Muriel

Jill

Optimal
Best Achieved



11

5-passenger taxi task –
What went wrong? Insufficient exploration

• The Good – Estimated values for the converged-upon policy 
accurate

• The Bad – Exploration:
Experimental exploration strategy in which exploration probability 
decreases with visits to state
– The Good – Automatically handles exploration � exploitation 

shift
• Useful when different subtasks trained to varying degrees
• Useful when different levels of hierarchy trained to varying degrees

– The Bad – Lacks sufficient subtlety
• Exploration in earlier states must continue longer than in later states
• Exploration at higher levels of hierarchy must continue longer than 

at lower levels
• Exploration must improve before attempts to learn simultaneously at 

multiple levels of the hierarchy – which is possible in theory



12

Nuggets & Coal

• Nuggets
– Using Soar’s operator 

no-change impasses 
for hierarchical task 
decomposition 
provides a nice 
structure for 
implementing 
established 
hierarchical RL ideas

• Coal
– Relies on impasses for 

task decomposition
– Exploration strategies 

insufficient
– Soar-RL rewards 

difficult to use –
particularly making 
rewards appear right 
before a subgoal
retracts


