Hierarchical Reinforcement Learning and Soar

Shelley Nason Soar Workshop 2006

Soar-RL: Soar with an architectural RL mechanism

- Reinforcement learning: Learning how to act so as to maximize the expected cumulative value of a (numeric) reward signal
- In Soar terminology, RL learns operator comparison knowledge
- Uses:
 - Learning without model of operator effects
 - Learning in nondeterministic domains
 - Learning in non-goal-based tasks
- Limitation of old work: RL incompatible with Soar impasses

RL and Soar impasses

- Learning impasses (i.e., tie impasse)
 - A place for RL? Interesting question.
 - Not what this talk is about
- Michigan-style goal-stack (op no-change)
 - − Hierarchical task decomposition
 → Hierarchical RL
 - Hierarchical RL: RL with temporally-extended actions,
 - Actions of variable timespan
 - Actions whose expected reward, timespan, and next state depend on subtask policy
 - Impassed operator \rightarrow temporally-extended action

Example Hierarchical Task: Taxi Domain

- A higher-level task: Navigate to G
- A lower-level task (primitive action): Move East

Hierarchical RL:

Higher-level operator

- Higher-level operator (i.e., NavigateTo(G))
 - Treated as temporally extended action.
 - Value includes:
 - Rewards received while operator selected
 - Value of next state, discounted by length of time operator was selected

Hierarchical RL: Lower-level operator

- Lower-level operators (i.e., MoveEast)
 - Learning in subtask try to divorce subtask value function from context
 - Subtask value function does not predict beyond end of subtask
 - Task-specific reward for subtask end state

What is gained?

- Faster learning in single task
 - More immediate feedback since rewards received by end of subtask

What is gained?

- Transfer of subtask policy between higher-level tasks
 - Made possible by generalizing away higher-level context in subtask value functions

Untrained vs. Trained RL - Transfer one-passenger taxi task

Learning to choose among highlevel operators

- The task:
 - 5 passengers with various locations, destinations
 - Max of 2 taxi occupants
 - Learn the shortest path
- Decision-making:
 - Using learned policies for navigate
 - Select among Get(Pass_i) & Put(Pass_i) tasks
- Unhappy result Convergence to non-optimal policies

5-passenger taxi task results

- Optimal policy 61 steps
- In 5 trials converged to policies of length 75, 87, 69, 86, and 78

5-passenger taxi task – What went wrong? Insufficient exploration

- The Good Estimated values for the converged-upon policy accurate
- The Bad Exploration: Experimental exploration strategy in which exploration probability decreases with visits to state
 - The Good Automatically handles exploration → exploitation shift
 - Useful when different subtasks trained to varying degrees
 - Useful when different levels of hierarchy trained to varying degrees
 - The Bad Lacks sufficient subtlety
 - Exploration in earlier states must continue longer than in later states
 - Exploration at higher levels of hierarchy must continue longer than at lower levels
- Exploration must improve before attempts to learn simultaneously at multiple levels of the hierarchy which is possible in theory

Nuggets & Coal

Nuggets

- Using Soar's operator no-change impasses for hierarchical task decomposition provides a nice structure for implementing established hierarchical RL ideas
- Coal
 - Relies on impasses for task decomposition
 - Exploration strategies insufficient
 - Soar-RL rewards difficult to use – particularly making rewards appear right before a subgoal retracts