
What’s New in Soar 8.6.2

Douglas Pearson
+ Bob, Jon, Karen, Taylor, John

May 25, 2006

douglas.pearson@threepenny.net
soar-sml-list@lists.sourceforge.net

2

Quick Review of 8.6.0/8.6.1

• Introduction of XML based interface to Soar
– SML (Soar Markup Language)

• Opened the door to other languages
– Java, C++, Tcl
– New debugger in Java

• More flexible debugging
– Embedding kernel into environment and debug remotely
– Faster performance
– Dynamic connection and disconnection of debugger

• No kernel level changes
– Just new way to connect environments & tools to Soar
– Cleaned up and rewritten command line interface

3

Connecting to Soar

SML Style

Uniform for entire interface

I/O Commands
^input-link

^output-link

Debug Commands
print s3
watch 4

Run Commands
run 10 --d

step 5

Kernel Events
after-decision-cycle

agent-created

Soar
Kernel

XML
over Socket

or
Function Call

4

Connecting to Soar

SML Style

I/O Commands
^input-link
^output-link

Debug Commands
print s3
watch 4

Run Commands
run 10 --d

step 5

Kernel Events
after-decision-cycle

agent-created

Soar
KernelSML

(XML)
SML

(XML)

Socket

Function
Call

Client SML Kernel SML

gSKI

Command
Line

Other
(I/O

Events)

5

8.6.1 Status

• Downloads from Source Forge
– ~3,000

• Many questions from unrecognized people and groups

• Anecdotally reasonably simple to interface too
– Cross language capabilities working fine
– Majority of tools and environments (that we know about) in Java
– Some build and install issues on Unix/Linux

• But some remaining problems
– Run til output broken
– Print wmes on input link that aren’t in working memory yet

6

Setting a “stop-point”

• In 8.5 and 8.6.1 “run n decisions” always stops after output
– Hard to use “matches”
– Want an easy way to control when to stop

• Green marker shows current phase
– But only updates at end of a run

• Red marker shows where to stop (for “run n”)
– Click in GUI in debugger to change
– Or “set-stop-phase --before –apply” etc.

7

“Run 0” and “Run n”

• “run 0”
– Runs all agents up to the current stop-point
– Quick way to synchronize agents to a phase

• Decisions vs Decision Cycles
– Decision cycle ends after output
– Decision occurs when select operator / impasse
– “run n” ?
– Run for n decisions and then to the stop-point
– 8.6.2. not 100% compliant to this yet but close

8

Flexibly Interleaving Agents

• 8.6.1
– Agents always interleaved by phase
– Tank Soar requires by output generation

• Each tank “takes a turn” in the game

• 8.6.2
– Can interleave by elaboration, phase, decision, output
– E.g. “run -o 3 -interleave d”
– Combined with other changes => total rewrite of

scheduler

9

Different I/O Models

• Soar agent always
– Receives input in the input phase
– Generates output in the output phase

• Environments can vary
– Asynchronous: Environment updates when each agent acts

• Real world
• Not all actors are Soar agents (or necessarily intelligent)

– Synchronous: Environment updates after all agents act
• Easier to debug
• May be better for some research

• Probably less interested in the environment / task and more in the
agent

http://winter.eecs.umich.edu/soarwiki/Main_Page

10

Output: Updating the World

• Option 1: Agent::Register(smlEVENT_AFTER_OUTPUT_PHASE)
– Check for changes to the output link and change world
– Good for asynchronous environment
– Difficult for synchronous because agentA acts before agentB unless buffer actions in environment
– Low performance – one event per agent per decision cycle. May not have acted.

• Option 2: Agent::AddOutputHandler(attribute, handler)
– Called immediately after attribute is added to output link
– Similar strengths and weaknesses to option 1
– Better performance than option 1 but must know attribute names

• Option 3: Kernel::Register(smlEVENT_AFTER_ALL_OUTPUT_PHASES)
– Called after all agents have completed output phase
– Easier to produce synchronous interaction
– Better performance – one event per execution cycle (for any number of agents)

• Option 4: Kernel::Register(smlEVENT_AFTER_ALL_GENERATED_OUTPUT)
– Called after all agents have generated output
– Turn based environments (e.g. Tank Soar)
– Enforces completely synchronous behavior
– An unusual choice

11

Push vs Pull for Input

• Option 1: Push
– When environment changes send new state to kernel
– Ignores agent’s phases
– Requires SML/gSKI to buffer until each agent’s next input phase
– If environment changes faster than agent checks input, this option is lower performance
– Implementation: Driven by output events (or external actors)

• (Output) -> Change World -> Send Input

• Option 2: Pull
– Agent calls over to environment each input phase to get current state
– No buffering required
– If environment changes slower than agent checks input, this option is lower performance
– Implementation: Register(smlEVENT_BEFORE_INPUT_PHASE)

• Send current state in event handler.
• (Output) -> Change World. Don’t send new input.

• Soar 8.6.2 supports all of these different input/output options
– Please consider your task in selecting implementation
– Pretty easy to switch back and forth
– Unnecessary events can be expensive if they cross the client-kernel divide

12

Java Eaters

• All new implementation in 8.6.2
• Higher performance.
• Output – smlEVENT_AFTER_ALL_OUTPUT_PHASES
• Input – push model (output -> update -> send input)
• Run – RunAllAgentsForever()
• Quite common design for environments

13

Java Tank Soar

• All new implementation in 8.6.2. Shares some code with Java Eaters.
• Higher performance.
• Can run without a UI
• Output – smlEVENT_AFTER_ALL_GENERATED_OUTPUT
• Input – push model (output -> update -> send input)
• Run – RunAllAgentsForever(sml_INTERLEAVE_UNTIL_OUTPUT)

14

New Tool: Quick Link

• Manually control the input link
• “Fake” an environment

– Test specific situations

• Examine current input and output links
• Add input wmes
• Modify or delete existing input wmes
• Run Soar
• Store and load scripts of commands
• Not in 8.6.2 release but will follow shortly

15

New Tool: Soar Text IO

• Easy way to place text (individual words) onto the input link in a
standard way

– Providing problem sets to an agent
– Providing guidance or instruction

^input-link
^text

^text-input-number <num>
^length <num-words>
^next

^value <word-one>
^next

^value <word-two>
^next

^value <word-three>
^next

^value nil

•Not in 8.6.2 release but will follow shortly

16

Better Logging

• How to log what Soar is doing?
– Record trace as text file and parse it
– Augment productions to output log information (Vista)
– Modify kernel to generate logging data

• Alternative is a logging application (client)
– Connects to Soar while it’s running (no overhead when not logging)
– Register for events you are interested in
– Output log information in any format desired
– Examples in C++ and Java included in 8.6.2

• E.g. To create a behavior trace in your format
MyXMLEventHandler(ClientXML* pTraceXML) {

if (pTraceXML->IsTagState()) {
std::string count = pTraceXML->GetDecisionCycleCount() ;
std::string stateID = pTraceXML->GetStateID() ;
std::string impasseObject = pTraceXML->GetImpasseObject() ;
std::string impasseType = pTraceXML->GetImpasseType() ;

// Write this out any way you want
fprintf(gOutputFile, "%s %s (%s %s)\n", count.c_str(), stateID.c_str(), impasseObject.c_str(),

impasseType.c_str()) ;
}

– The entire logging application can be ~40 lines of code

17

Client-to-Client Communication

Client 1
(Environment)

Kernel

Client 2
(Debugger)

Client 3
(Logger)

• 8.6.1 – Sets of clients talking to kernel

18

Client-to-Client Communication

Client 1
(Environment)

Kernel

Client 2
(Debugger)

Client 3
(Logger)

• 8.6.2 – Clients can talk to each other
– E.g. Environment signally logger to start logging
– E.g. Environment waiting for debugger to launch before

proceeding

19

Client-to-Client Communication

• 8.6.2 – Clients can talk to each other

– Actually messages routed through kernel
• Implicitly synchronizes with kernel actions

– Listen for messages
• Kernel::RegisterForClientMessageEvent(“debugger-status”, handler)

– Send messages:
• Kernel::SendClientMessage(“debugger-status”, “ready”) ;

– Messages are strings
• Can be simple text
• Can be XML
• Content entirely determined by client

20

Better Tcl Support

• Problem
– 8.5 Tcl was part of the kernel
– 8.6 Tcl removed from kernel, available for environments

– But in 8.5 could use Tcl to generate/expand productions:
proc NGS_prefer-operator-x-over-y { op1 op2 {prefix

"operator-preference*"}} {
sp "$prefix-$op1-over-$op2

(state <s> ^operator <o1> + <o2> +)
(<o1> ^name $op1)
(<o2> ^name $op2)

-->
(<s> ^operator <o1> > <o2>)“ }

NGS_prefer-operator-x-over-y generate-goal-subgoal-summary \

generate-goal-alternatives-summary

– Soar Tech uses this extensively
– How to support this in 8.6.2 when debugger in Java, kernel in

C++ and Tcl not required?

21

Better Tcl Support

I/O Commands
^input-link
^output-link

Debug Commands
print s3
watch 4

Run Commands
run 10 --d

step 5

Kernel Events
after-decision-cycle

agent-created

Soar
KernelSML

(XML)
SML

(XML)

Socket

Function
Call

Client SML Kernel SML

gSKI

Command
Line

Other
(I/O)

Tcl Filter

Tcl Client Application

22

Better Tcl Support

• 1) Command typed in debugger
– “printme s1”

• 2) Command is sent to KernelSML for execution

• 3) KernelSML recognizes a filter is present
– Sends command to the filer

• 4) Tcl filter receives command
– Selects an interpreter to use to execute the command
– Executes the command as a Tcl command and captures the result

• 5) Passes the result back to KernelSML
– Marks command as executed (i.e. eaten by filter)

• 6) KernelSML passes result back to debugger as result of command
– Debugger prints “s1 ^io I1 ^superstate nil …” etc.

23

Better Tcl Support

• Filter main loop:
proc MyFilter {id userData agent filterName commandXML} {

set interpreter [getInterpreter [$agent GetAgentName] $agent]

set xml [ElementXML_ParseXMLFromString $commandXML]
set commandLine [$xml GetAttribute $sml_Names_kFilterCommand]

Evaluates the command within the child interpreter for this agent
set error [catch {$interpreter eval $commandLine} result]

Return the result of the command as the output string for the command
which in turn will appear in the debugger
$xml AddAttribute $sml_Names_kFilterOutput "$result"

}

• Soar commands routed back from Tcl to Soar
proc add-wme {args} {return [soar_agent ExecuteCommandLine "add-wme $args"]}
proc excise {args} {return [soar_agent ExecuteCommandLine "excise $args"]}

24

Properties of Filter Solution

• Full Tcl interpreter(s) in own process
– No limitations on Tcl code

• Works for all clients not just Java debugger
– E.g. Can load “Tcl productions” from standalone environment

• No modifications to clients
– Debugger is completely unaware filtering is happening

• No impact on people not using Tcl
– Debugger doesn’t include Tcl interpreter support

• Performance should be good
– Only affects time to parse commands
– Once Soar is running filter is never called

• Filter is modular and separate from rest of code
• Filter can be in any supported language
• Other filters are possible

– E.g. Just listen for “source x.soar” and run a precompiler
– Cleaner than modifying the command in the kernel code

• But Tcl filter’s not finished yet in 8.6.2

25

Commits are easier
• 8.6.1

Identifier* pSentence = pAgent->CreateIdWME(pAgent->GetInputLink(), "sentence") ;
pAgent->CreateStringWME(pSentence, "newest", "yes") ;
pAgent->CreateIntWME(pSentence, "num-words", 3) ;
pAgent->Commit() ;

• Commit()
– Collects all input changes and sends them to kernel in one go
– Higher performance but error prone

• 8.6.2
Identifier* pSentence = pAgent->CreateIdWME(pAgent->GetInputLink(), "sentence") ;
pAgent->CreateStringWME(pSentence, "newest", "yes") ;
pAgent->CreateIntWME(pSentence, "num-words", 3) ;
// Not needed: pAgent->Commit() ;

– AutoCommit on => slightly lower performance
– Kernel::SetAutoCommit(false) to revert to 8.6.1 behavior
– But kernel often inside environment now so less impact

• Init-soar
– Works (8.6.1 too) and resends input link to agents automatically

26

Wide Range of Events
• Run Events

– [Before | After] Each Phase // As agent runs a phase
– [Before | After] Decision Cycle // Completes decision cycle
– [Before | After] Run Starts | Stops // Agent run / stop
– [Before | After] Running // Each step of a run (decision, phase etc.)
– Interrupt Check // Low bandwidth chance to stop
– After Interrupt // Run was interrupted

• Update Events
– After all output phases // Synchronous world
– After all generated output // Turn based world

• Production Events
– After Production Added // During loading
– Before Production Removed // Excise
– After Production Fired // Production firings

• System Events
– After agent created // New agent created
– Before agent destroyed // Agent about to be destroyed
– [Before | After] agent reinitialized // init-soar
– System Property changed // set [x] [y]
– System Start | Stop // Agents are running / all stopped

• Trace Events
– Print // Text output
– Echo // Echo’d commands
– Trace Output // XML output
– Input Received // Listen for what environment is doing

• RHS and User Events
– RHS Function handler // Implement RHS function in Java, C++, Tcl or C#
– Command Line filter // Filter commands before kernel processes them
– Client messages // From one client to another (not to/from kernel)
– Edit production // Ask editor to locate production

TestSMLEvents & Wiki

27

Other 8.6.2 additions

• Added Java TOH as an SML tutorial explaining all steps
– Line by line how to build a simple SML environment
– Start here if building a new environment

• Added new phase specific events: before_input_phase etc.
– More efficient than generic “phase” event

• Added log output in the debugger on a window by window basis
– Necessary to separate out streams of output

• Added C# as a supported language
– C++, Tcl, Java, C#
– C++: Identifier* pInputLink = pAgent->GetInputLink() ;
– Tcl: set inputLink [$agent GetInputLink]
– Java: Identifier inputLink = agent.GetInputLink() ;
– C#: Identifier inputLink = agent.GetInputLink() ;

• Added Visual Studio 2005 support (as well as VS 2003)
• Added Java 5.0 support (as well as Java 1.4.2)
• Added new random number generator and srand() command
• Added synchronization option in debugger (so Soar doesn’t run ahead)

28

Other 8.6.2 additions

• Improved Linux performance vastly (20x in some cases)
• Improved Windows performance further (> 30% faster in TOH)

• Fixed major top state memory leak (NO_TOP_REFS)
– Memory usage no longer climbs when doing lots of top state work

• More efficient garbage collection when states (contexts) go away

• Lots of bugs fixed
– http://winter.eecs.umich.edu/soarwiki/

• Loose coupling working
– 8.6.2 debugger will load and run 8.6.1 kernel w/o modification
– “New bits” (e.g. phase diagram) just do nothing

