What’s New in Soar 8.6.2

Douglas Pearson
+ Bob, Jon, Karen, Taylor, John

May 25, 2006

douglas.pearson@threepenny.net
soar-smil-list@lists.sourceforge.net

® ThreePenny
..EEIFTWARE

Quick Review of 8.6.0/8.6.1

Introduction of XML based interface to Soar
— SML (Soar Markup Language)

Opened the door to other languages
— Java, C++, Tcl
— New debugger in Java

More flexible debugging

— Embedding kernel into environment and debug remotely
— Faster performance

— Dynamic connection and disconnection of debugger

No kernel level changes
— Just new way to connect environments & tools to Soar
— Cleaned up and rewritten command line interface

@® ThreePenny
@@ socorFrTwarE

Connecting to Soar
SML Style

/O Commands
Ainput-link
Aoutput-link

Run Commands
run 10 --d
step 5 XML
over Socket
or
Function Cdl

Kernel Events
after-decision-cycle
agent-created

Uniform for entire interface

® ThreePenny
OO®scrrware

® T

S

Client SML

|/O Commands
Ainput-link
~output-link

Run Commands
run 10 --d
step 5

Debug Commands
print s3
watch 4

Kernel Events
after-decision-cycle
agent-created

hreePenny

Connecting to Soar

-

SML Style
Kernel SML

8.6.1 Status

Downloads from Source Forge
— ~3,000

Many questions from unrecognized people and groups

Anecdotally reasonably simple to interface too
— Cross language capabilities working fine
— Majority of tools and environments (that we know about) in Java
— Some build and install issues on Unix/Linux

But some remaining problems
— Run til output broken
— Print wmes on input link that aren’t in working memory yet

@® ThreePenny
@@ socorFrTwarE

Setting a “stop-point”

 In8.5and 8.6.1 “run n decisions” always stops after output
— Hard to use “matches”
— Want an easy way to control when to stop

 Green marker shows current phase
— But only updates at end of a run

 Red marker shows where to stop (for “run n”)
— Click in GUI in debugger to change
— Or “set-stop-phase --before —apply” etc.

@® ThreePenny
@@ socorFrTwarE

“Run 0” and “Run n”

° Hrun O”
— Runs all agents up to the current stop-point
— Quick way to synchronize agents to a phase

e Decisions vs Decision Cycles

— Decision cycle ends after output

— Decision occurs when select operator / impasse
— “‘run n” ?

— Run for n decisions and then to the stop-point
— 8.6.2. not 100% compliant to this yet but close

@® ThreePenny
X 3 |

Flexibly Interleaving Agents

e 8.6.1

— Agents always interleaved by phase

— Tank Soar requires by output generation
e Each tank “takes a turn” in the game

e 8.6.2

— Can interleave by elaboration, phase, decision, output
— E.g. “run -0 3 -interleave d”

— Combined with other changes => total rewrite of
scheduler

@® ThreePenny
X 3 |

Different 1/0 Models

e Soar agent always
— Receives input in the input phase
— Generates output in the output phase

e Environments can vary

— Asynchronous: Environment updates when each agent acts
* Real world
* Not all actors are Soar agents (or necessarily intelligent)
— Synchronous: Environment updates after all agents act
» Easier to debug
» May be better for some research

* Probably less interested in the environment / task and more in the
agent

http://winter.eecs.umich.edu/soarwiki/Main_Page

@® ThreePenny
@@ socorFrTwarE

Output: Updating the World

Option 1: Agent::Register(smIEVENT_AFTER_OUTPUT_PHASE)
Check for changes to the output link and change world
Good for asynchronous environment
Difficult for synchronous because agentA acts before agentB unless buffer actions in environment
Low performance — one event per agent per decision cycle. May not have acted.

Option 2: Agent::AddOutputHandler(attribute, handler)
— Called immediately after attribute is added to output link
— Similar strengths and weaknesses to option 1
— Better performance than option 1 but must know attribute names

Option 3: Kernel::Register(smIEVENT_AFTER_ALL _OUTPUT_PHASES)
— Called after all agents have completed output phase
— Easier to produce synchronous interaction
— Better performance — one event per execution cycle (for any number of agents)

Option 4: Kernel::RegistersmIEVENT_AFTER_ALL_GENERATED_ OUTPUT)
Called after all agents have generated output
Turn based environments (e.g. Tank Soar)
Enforces completely synchronous behavior
An unusual choice

@® ThreePenny
@@ socorFrTwarE

Push vs Pull for Input

. Optlon 1: Push
When environment changes send new state to kernel
Ignores agent’'s phases
Requires SML/gSKI to buffer until each agent’s next input phase
If environment changes faster than agent checks input, this option is lower performance
Implementation: Driven by output events (or external actors)
e (Output) -> Change World -> Send Input

e Option 2: Pull
— Agent calls over to environment each input phase to get current state
— No buffering required

— If environment changes slower than agent checks input, this option is lower performance
— Implementation: Register(smIEVENT_BEFORE_INPUT_PHASE)

* Send current state in event handler.

e (Output) -> Change World. Don’'t send new input.

e Soar 8.6.2 supports all of these different input/output options
— Please consider your task in selecting implementation
— Pretty easy to switch back and forth

— Unnecessary events can be expensive if they cross the client-kernel divide

@® ThreePenny
@@ socorFrTwarE

Java Eaters

-
Java Eaters

Map: random-walls.emap

+«+ H & + H *+ + H + + H + + H * M
Map

T TRRERY (.
. Food remaining: 13
. . . * . e e e o o Points remaining: S65

Change Map

Agents

Mew

Score
" 3

*« &+ H + + H + + H *

All new implementation in 8.6.2

Higher performance.

Output — smIEVENT_AFTER_ALL_OUTPUT_PHASES
Input — push model (output -> update -> send input)
Run — RunAllAgentsForever()

Quite common design for environments

@® ThreePenny
@@ socorFrTwarE

ava Tank Soar

—
Java TankSoar

All new implementation in 8.6.2. Shares some code with Java Eaters.
Higher performance.

Can run without a Ul

Output — smIEVENT_AFTER_ALL GENERATED_ OUTPUT
Input — push model (output -> update -> send input)

Run — RunAllAgentsForever(sml_INTERLEAVE_UNTIL_OUTPUT)

@® ThreePenny
@@ socorFrTwarE

New Tool: Quick Link

Manually control the input link

e “Fake” an environment
— Test specific situations

s+ C:\Documents and Settingsilafritay\Desktoplsoar-devitrunk\So
Listening on port 12121

s Cuprent Input—-Link Structure s
CIL>

> debug

IGELET T Received a connection
Got new connection

..complete?

» add il “blocked ~Bl

sexsess Cuprrent Input—-Link Structure s

(IL “bhlocked Bi>
(B1>

? -

Examine current input and output links
Add input wmes

Modify or delete existing input wmes
Run Soar

Store and load scripts of commands

Not in 8.6.2 release but will follow shortly

@® ThreePenny
@@ socorFrTwarE

New Tool: Soar Text IO

« Easy way to place text (individual words) onto the input link in a
standard way
— Providing problem sets to an agent
— Providing guidance or instruction

ANinput-link
Mext
Mext-input-number <num>
ANength <num-words>
next
value <word-one>
next
value <word-two>
next
value <word-three>
next
"value nil

*Not in 8.6.2 release but will follow shortly

@® ThreePenny
@@ socorFrTwarE

Better Logging

How to log what Soar is doing?
— Record trace as text file and parse it
— Augment productions to output log information (Vista)
— Modify kernel to generate logging data

« Alternative is a logging application (client)
— Connects to Soar while it's running (no overhead when not logging)
— Register for events you are interested in
— Output log information in any format desired
— Examples in C++ and Java included in 8.6.2

E.g. To create a behavior trace in your format
MyXMLEventHandler(ClientXML* pTraceXML) {

if (pTraceXML->IsTagState()) {
std::string count = pTraceXML->GetDecisionCycleCount() ;
std::string statelD = pTraceXML->GetStatelD() ;
std::string impasseObject = pTraceXML->GetImpasseObject() ;
std::string impasseType = pTraceXML->GetlmpasseType() ;

/[Write this out any way you want

fprintf(gOutputFile, "%s %s (%s %s)\n", count.c_str(), statelD.c_str(), impasseObject.c_str(),
impasseType.c_str()) ;

}

— The entire logging application can be ~40 lines of code

@® ThreePenny
@@ socorFrTwarE

Client-to-Client Communication

« 8.6.1 — Sets of clients talking to kernel

Client 1 Client 2 Client 3
(Environment) (DEoLEgEs) (Logger)

.

@® ThreePenny
X 3 |

Client-to-Client Communication

« 8.6.2 — Clients can talk to each other
— E.g. Environment signally logger to start logging

— E.g. Environment waiting for debugger to launch before
proceeding

Client 1 Client 2 Client 3
(Environment) -> DEoLEgEs) (Logger)

@® ThreePenny
@@ socorFrTwarE

Client-to-Client Communication
e 8.6.2 — Clients can talk to each other

Actually messages routed through kernel
« Implicitly synchronizes with kernel actions

Listen for messages
« Kernel::RegisterForClientMessageEvent(“debugger-status”, handler)

Send messages:
» Kernel::SendClientMessage(“debugger-status”, “ready”) ;

Messages are strings
» Can be simple text
e Can be XML
« Content entirely determined by client

@® ThreePenny
@@ socorFrTwarE

Better Tcl Support

e Problem
— 8.5 Tcl was part of the kernel
— 8.6 Tcl removed from kernel, available for environments

— But in 8.5 could use Tcl to generate/expand productions:
proc NGS_prefer-operator-x-over-y { opl op2 {prefix
"operator-preference*'}} {

sp "$prefix-$opl-over-$op2
(state <s> "Noperator <01> + <02> +)
(<01> “name $op1l)
(<02> “name $op2)

-->
(<s> Moperator <01> > <02>)" }

NGS_prefer-operator-x-over-y generate-goal-subgoal-summary \
generate-goal-alternatives-summary

— Soar Tech uses this extensively

— How to support this in 8.6.2 when debugger in Java, kernel in
C++ and Tcl not required?

@® ThreePenny
@@ socorFrTwarE

Better Tcl Support

Client SML

I/0 Commands
Ainput-link
Aoutput-link

Run Commands
run 10 --d
step 5

Kernel Events | _
after-decision-cycle
agent-created

@® ThreePenny
O®scrrware

Functio
Call

Tcl Client Application

Tcl Filter

Kertdl (L

Better Tcl Support

1) Command typed in debugger
— “printme s1”

2) Command is sent to KernelSML for execution

3) KernelSML recognizes a filter is present
— Sends command to the filer

4) Tcl filter receives command
— Selects an interpreter to use to execute the command
— Executes the command as a Tcl command and captures the result

5) Passes the result back to KernelSML
— Marks command as executed (i.e. eaten by filter)

6) KernelSML passes result back to debugger as result of command
— Debugger prints “s1 "o |1 Asuperstate nil ..."” etc.

@® ThreePenny
@@ socorFrTwarE

Better Tcl Support

* Filter main loop:
proc MyFilter {id userData agent filterName commandXML} {
set interpreter [getinterpreter [$agent GetAgentName] $agent]

set xml [ElementXML_ParseXMLFromString $commandXML]
set commandLine [$xml GetAttribute $sml_Names_kFilterCommand]

Evaluates the command within the child interpreter for this agent
set error [catch {$interpreter eval ScommandLine} result]

Return the result of the command as the output string for the command
which in turn will appear in the debugger
$xml AddAttribute $sml_Names_kFilterOutput "$result"

« Soar commands routed back from Tcl to Soar
proc add-wme {args} {return [soar_agent ExecuteCommandLine "add-wme $args"]}
proc excise {args} {return [soar_agent ExecuteCommandLine "excise $args"]}

@® ThreePenny
@@ socorFrTwarE

Properties of Filter Solution

Full Tcl interpreter(s) in own process

— No limitations on Tcl code
Works for all clients not just Java debugger

— E.g. Can load “Tcl productions” from standalone environment
No modifications to clients

— Debugger is completely unaware filtering is happening
No impact on people not using Tcl

— Debugger doesn’t include Tcl interpreter support
Performance should be good

— Only affects time to parse commands

— Once Soar is running filter is never called
Filter is modular and separate from rest of code
Filter can be in any supported language
Other filters are possible

— E.g. Just listen for “source x.soar” and run a precompiler

— Cleaner than modifying the command in the kernel code
But Tcl filter’s not finished yet in 8.6.2

@® ThreePenny
@@ socorFrTwarE

Commits are easier

Identifier* pSentence = pAgent->CreateldWME(pAgent->GetlnputLink(), "sentence") ;
pAgent->CreateStringWME (pSentence, "newest", "yes") ;
pAgent->CreatelntWME(pSentence, "num-words", 3) ;

pAgent->Commit() ;

o Commit()
— Collects all input changes and sends them to kernel in one go

— Higher performance but error prone

e 8.6.2

Identifier* pSentence = pAgent->CreateldWME(pAgent->GetlnputLink(), "sentence") ;
pAgent->CreateStringWME(pSentence, "newest", "yes") ;
pAgent->CreateIntWME(pSentence, "num-words", 3) ;

/ Not needed: pAgent->Commit() ;

— AutoCommit on => slightly lower performance
— Kernel::SetAutoCommit(false) to revert to 8.6.1 behavior
— But kernel often inside environment now so less impact

Init-soar
— Works (8.6.1 too) and resends input link to agents automatically

@® ThreePenny
@@ socorFrTwarE

Wide Range of Events

Run Events
[Before | After] Each Phase
[Before | After] Decision Cycle
[Before | After] Run Starts | Stops
[Before | After] Running
Interrupt Check
After Interrupt

Update Events
— After all output phases
— After all generated output

Production Events
— After Production Added
— Before Production Removed
— After Production Fired

System Events
— After agent created
— Before agent destroyed
— [Before | After] agent reinitialized
— System Property changed
— System Start | Stop
Trace Events
— Print
— Echo
— Trace Output
— Input Received

RHS and User Events

/I As agent runs a phase

/Il Completes decision cycle

/l Agent run / stop

/I Each step of a run (decision, phase etc.)
/I Low bandwidth chance to stop

/l Run was interrupted

/I Synchronous world
/I Turn based world

// During loading
Il Excise
// Production firings

/l New agent created

/l Agent about to be destroyed

/I init-soar

Il set [X] [y]

/I Agents are running / all stopped

/I Text output

// Echo’d commands

/I XML output

/I Listen for what environment is doing

— RHS Function handler
— Command Line filter
— Client messages

— Edit production

@® ThreePenny
@@ socorFrTwarE

/I Implement RHS function in Java, C++, Tcl or C#
/I Filter commands before kernel processes them
/I From one client to another (not to/from kernel)

/I Ask editor to locate production

TestSMLEvents & Wiki

Other 8.6.2 additions

Added Java TOH as an SML tutorial explaining all steps
— Line by line how to build a simple SML environment
— Start here if building a new environment
Added new phase specific events: before_input_phase etc.
— More efficient than generic “phase” event
Added log output in the debugger on a window by window basis
— Necessary to separate out streams of output
Added C# as a supported language
— C++, Tcl, Java, C#
C++: Identifier* plnputLink = pAgent->GetinputLink() ;
Tcl: setinputLink [$agent GetlnputLink]
Java: ldentifier inputLink = agent.GetlnputLink() ;
C#: Identifier inputLink = agent.GetlnputLink() ;

Added Visual Studio 2005 support (as well as VS 2003)

Added Java 5.0 support (as well as Java 1.4.2)

Added new random number generator and srand() command

Added synchronization option in debugger (so Soar doesn’t run ahead)

@® ThreePenny
@@ socorFrTwarE

Other 8.6.2 additions

Improved Linux performance vastly (20x in some cases)
Improved Windows performance further (> 30% faster in TOH)

Fixed major top state memory leak (NO_TOP_REFS)
— Memory usage no longer climbs when doing lots of top state work
More efficient garbage collection when states (contexts) go away

Lots of bugs fixed

— http://winter.eecs.umich.edu/soarwiki/

Loose coupling working
— 8.6.2 debugger will load and run 8.6.1 kernel w/o modification
— “New bits” (e.g. phase diagram) just do nothing

@® ThreePenny
@@ socorFrTwarE

