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Learning

� Architectures for Cognitive Information Processing (ACIP)
• New general “cognitive” architectures for DARPA-hard problems

• Cognitive layer: proposed (strong) integration of Swarm, ACT-R, Soar
• Soar Tech role: macro-cognitive architecture module

• Using Soar as platform for knowledge-based reasoning
• Example problem: Evidence marshalling
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Outline

� Goal: 
• Support evidence marshalling (EM) with automated reasoning

� Problem: 
• Infinite search spaces

• Difficult to know if/when progress is being made 
• One step from “Eureka!”

� Proposed Solution: Relevance Estimation
• Algorithms that guide EM searches and get better with experience

� Methods:
• Test bed for evaluating relevance estimation and evidence marshalling 

� Warning:
• Not a lot of Soar in this story; mostly laying groundwork…
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Evidence Marshalling

� Process of “connecting the dots” to form a coherent 
narrative about a collection of evidences
• Pop-culture Examples: 

• Sherlock Holmes

• Procedural TV shows (Perry Mason, Law & Order)

• Specialized human techniques for EM
• Wigmorean analysis

� Many potential applications for automated methods:
• Police investigations
• Insurance fraud
• Intelligence analysis
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Automating EM

� Automated reasoning techniques have been demonstrated 
as effective tools for EM in very restricted problem domains
• cause-of-death conclusions from evidence
• insurance fraud detection

� Limits to automated EM in open-ended domains
• Hypothesis generation
• Knowledge sources
• Efficient control of search process
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Automating EM: Near-term solutions

� Hypothesis generation:
• In the near- to mid-term, no automated approach is likely to 

challenge human creativity
• Our approach leverages user insight and experience by capturing 

their notions and “hunches” and then searching for confirming or 
disconfirming evidence 

� Sources of knowledge
• Trifles

• Many existing automated sources: data extraction tools
• Domain knowledge

• Facts and inferences from applicable domain(s)
• Increasing stores of general knowledge resources: Cyc, Semantic Web

� Efficient search
• Must find intermediate hypotheses/assertions that can connect 

trifles to user hypotheses
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Challenge: Search Space is Infinitely Large

� Domain knowledge and trifles combine in infinitely many 
possible ways
• Bill Clinton was POTUS in 1996
• Hillary Clinton is Bill Clinton’s spouse
• …

� Difficult to judge if any individual intermediate hypothesis is 
getting closer to the goal
• Hillary Clinton lived in the White House in 1996

� Multiple, simultaneous searches
• Trifles: Which “trifles” are relevant
• Domain knowledge: Which facts about the world are relevant?
• Hypotheses: Which intermediate hypotheses are on the right track?
• Confidence: Which assertions are more likely/probable?
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Simultaneous searches
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Hypothesis: 
Efficient search for EM is a solvable challenge

� Evidence: 
• Although the search space is infinitely large, people perform 

evidence marshalling adequately
• How?

• Training & experience, tools (Wigmorean analysis)

• “Natural” pruning of the search space
• Humans generate heuristic choices (“hunches”) that can guide them thru 

very large search spaces

� Goal: explore computational methods for:
• Generating and assessing “hunches” (relevance estimation)
• Learning from experience to improve the relevance estimation 

process
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Proposal: Relevance Estimation

� Goal: Evaluate the relevance/importance of each new assertion 
• Cannot assume system already “knows” the answer or

knows that some new inference is an important “dot”
• Many potential assertions can be generated
• May not be obvious which assertions will actually be valuable or “relevant” to the problem 

(Avoid “wishful thinking”)

• Relevance estimation is the “strategy” for prioritizing direction(s) of reasoning and 
establishing “sufficiency” of a potential direction of reasoning

• Context is important: Not evaluating in isolation

� Contributing methods:
• Domain neutral: analogy, deduction, classification, etc.

• Extant computational models: Information scent (Pirolli), Conceptual fluidity (Hofstader) 

• Domain specific: social network analysis, model of user’s interest 

� Metrics for relevance determination:
• complexity-based (Occam’s razor)
• graph-based (path length)
• knowledge-based

• information scent
• ontological relationships
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Test bed for RE/EM Research

� Problem: 
• Need large bodies of encoded knowledge to evaluate approaches 

to RE/EM
• Access to “real” data is difficult for research purposes

• security, sensitivity, size, etc.

� Proposed Approach:
• Test bed for RE/EM

• Automatically generate potential search spaces

• Capture size and complexity of the space

• Systematically vary parameters that represent the “connectedness” of 
possible hypotheses in the example

• Simulate relevance across a number of orthogonal and over-lapping 
dimensions
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Example
User generated hypothesis
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Simulating relevance in the test bed

� Relevance:
• Predicts the likelihood of a relationship between m and n

• Estimated by aggregating multiple knowledge sources
• RE =f (re0, re1, re2, ... ren), where rei is a source of knowledge about 

the relationship between m and n

� Contributing knowledge sources, rei, can include: 
• ontological relationships between m and n
• semantic and syntactic similarity between m and n
• completeness of analogical mapping between m and n
• “cognitive” distance between m and n
• expectation of success of getting to m and n
• recognition of m in the context of n
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Simulating relevance in the test bed, cont’d

� Some sources can be simulated using graph theoretic operations, e.g., 
transitive closure in graph implies perfect knowledge of relations 
between dots, domain facts, and hypotheses.

TC matrixTC matrixTC matrixTC matrixpEM graphpEM graphpEM graphpEM graph
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Simulating relevance in the test bed, cont’d

� Real knowledge is imperfect and from multiple, potentially 
contradicting, sources

� In the testbed, the perfect TC relationships are distributed 
(with noise) to multiple rei matrices

TC matrixTC matrixTC matrixTC matrix rererere0000 rererere1111 rererere2222
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Simulating relevance in the test bed, cont’d

� Test bed facilitates:
• Easy use of knowledge sources represented as a matrices
• Explorations of how to aggregate noisy and contradictory 

knowledge
rererere0000 rererere1111 rererere2222

RE(m,n) = Σcj* rei(m,n)

RE(m,n) = max(rei(m,n))

RE(m,n) = avg(rei(m,n))

RE(m,n) = …

Aggregation options:
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Initial Results (1)

� Search for all nodes in pEM graphs
• DFS: exhaustive knowledge-free search; upper-bound

• TC: perfect knowledge give direct path to goal; lower bound

• RE: RE(m,n) guides priority-first search; 
• 90% fewer expanded nodes in comparison to DFS
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Initial Results (2)

� Testbed enables systematic exploration of RE alternatives

� vary patterns of domain/dot relationships

� vary patterns of data-to-hypothesis relationships  

� Graph shows 
search steps 
needed for a 
number of 
relevance 
estimation 
parameter 
settings 
(h=30, 
n=9000)
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Conclusions

� Humans provide evidence tractable search for EM is 
feasible and clues for how to do it 

� Test beds can be developed for exploring search challenge 
without large, a priori investments in knowledge encoding
• Proof-of-concept test bed can generate problems automatically for 

exploring the consequences of RE design options
• Plan: Complement with open-source, real-world datasets

• Enron email, Center for Non-proliferation studies WMD data sets

� Nuggets:
• Interesting ideas about how to attack this problem
• Developed simple testbed for exploring computational approaches
• Rich literature from which to draw inspiration

� Coal:
• No feasibility implementation/exploration of solution (“idea ware”)



2 May 2006 |   © 2006 Soar Technology, Inc.  |  Slide  20

Extra Slides
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RE is more than data screening…

� Data screening reduces the complexity somewhat
� The key to reducing effective complexity is dynamic 

adaptation to the specific search(es) at hand


